大家好,又见面了,我是你们的朋友全栈君。
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,
则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。
非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
Ax=mx,等价于求m,使得 (mE-A)x=0,其中E是单位矩阵,0为零矩阵。
|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次 多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是 复数。
如果n阶矩阵A的全部特征值为m1 m2 … mn,则 |A|=m1*m2*…*mn
同时矩阵A的迹是特征值之和: tr(A)=m1 m2 m3 … mn[1]
如果n阶矩阵A满足矩阵多项式 方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过 解方程g(m)=0求得。
还可用mathematica求得。
特征向量的引入是为了选取一组很好的基。空间中因为有了矩阵,才有了坐标的优劣。对角化的过程,实质上就是找特征向量的过程。如果一个矩阵在复数域不能对角化,我们还有办法把它化成比较优美的形式——Jordan标准型。高等代数理论已经证明:一个方阵在复数域一定可以化成Jordan标准型。这一点有兴趣的同学可以看一下高等代数后或者矩阵论。
经过上面的分析相信你已经可以得出如下结论了:坐标有优劣,于是我们选取特征向量作为基底,那么一个线性变换最核心的部分就被揭露出来——当矩阵表示线性变换时,特征值就是变换的本质!
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/167268.html原文链接:https://javaforall.cn