用 pandas + matplotlib 绘制精美的K线图

2022-09-21 10:51:38 浏览数 (1)

大家好,我是早起。

在使用 Python 进行金融数据分析时,绘制 K线图 是很常见的需求。

但如果使用 matplotlib 从 0 开始绘制,一步一步添加日线、均线、MACD、成交量等指标时,则会显得十分麻烦,且代码很难复用。

幸运的是在 matplotlib 中提供接口(matplotlib.finance)直接绘制K线,现在 matplotlib.finance 已经独立成库 mplfinance,更方便的让我们使用。

本文就将介绍如何使用 mplfinance 快速绘制专业的K线图,文末也有完整的数据与源码下载。

01

安装与数据准备

上面已经说到,mplfinance 是一个独立的库,所以直接使用 pip 安装即可,没有任何难度

代码语言:javascript复制
pip install mplfinance

至于在数据准备上,根据我的开发经验,越懒人版的绘图库对数据要求则越严格,所以在使用之前,我们需要将数据整理成指定的格式,下面是某股票(平安银行000001.sz)的对应数据

如上图所示,数据必须是Pandas DataFrame格式,且必须按照顺序包含开盘价、最高价、最低价、收盘价以及成交量,同时索引需要是pandas支持的时间类型。

关于如何获得、清洗得到这样的数据将不是本文的分享内容,下面仅介绍如何基于这样的数据进行绘图。

02

mplfinance常见用法

基础使用

首先需要导入

代码语言:javascript复制
import mplfinance as mpf

接下来,在上述数据基础上一行代码即可生成简易价格走势图

代码语言:javascript复制
mpf.plot(df_new, type='line')

添加移动均线

通过设置 mav 参数可以添加对应的移动均线,例如添加5日、10日、30日移动均线

代码语言:javascript复制
mpf.plot(df_new, type='line',mav=(5,10,30))

需要注意的是,这里的x日移动均线并不是通过我们数据的时间索引计算而来,仅是移动x个索引位置而来,由于我们数据时间精度为1天,所以恰好是对应的x天移动均线。

如果索引是分钟级数据,那么设置 mav 得到的就是x分钟均线!

添加成交量

通过设置 volume 参数,可以进一步添加成交量

代码语言:javascript复制
mpf.plot(df_new, type='line',mav=(5,10,30), volume=True)

制作蜡烛图

通过设置 type 参数可以绘制更专业的蜡烛图,由于上面的数据时间维度过长,绘制蜡烛图会导致很难看清细节。

所以下面绘制最后 40 个交易日的蜡烛图,并添加成交量与 3、6、9 日均线

代码语言:javascript复制
mpf.plot(df_new.tail(40), type='candle',mav=(3,6,9), volume=True)

展示非交易时间

上面的图是连续的,但交易日并不是天天都是,每天也有指定时间,通过设置 show_nontrading 参数,可以按照交易时间绘制,将非交易时间添加为空白

代码语言:javascript复制
mpf.plot(df_new,type='candle',mav = (3),show_nontrading=True, volume=True)

至此 mplfinance 的基本使用就介绍完毕,相比来说还是比较容易上手使用的。

彩蛋 - pyecharts

虽然 matplotlib 也可以绘制动态图,详见我的这篇文章,但是由于 matplotlib 的特性,展示起来并不是很方便。

如果需要能交互式操作数据,拖动时间轴等功能,可以尝试使用 pyecharts,但由于不像 mplfinance 封装好开箱即用,代码写起来还是需要相当一定时间的,大家可以自行选择

03

数据与源码下载

本文选自 「Pandas进阶修炼300题」第八章【金融数据与事件处理】第 3 小节

所以全部的源码与数据当然是包含在pandas300题中啦,点击下方图片即可查看具体的下载方式~

0 人点赞