❝本节来介绍如何使用R语言来做数据统计分析,通过「rstati」包进行
t-test
,完全使用tidyverse
体系进行数据清洗及可视化 ❞
安装并加载R包
代码语言:javascript复制package.list=c("tidyverse","rstatix","ggtext")
for (package in package.list) {
if (!require(package,character.only=T, quietly=T)) {
install.packages(package)
library(package, character.only=T)
}
}
数据清洗
代码语言:javascript复制❝自定义计算sd,se;以「0.5」为对照进行
t_test
,通过dplyr整理绘图数据,去掉NA,ns
❞
df <- ToothGrowth %>%
mutate(dose=as.factor(dose)) %>%
group_by(dose) %>%
summarise(value_mean=mean(len),sd=sd(len),se=sd(len)/sqrt(n())) %>%
left_join(.,ToothGrowth %>% t_test(data =., len ~ dose, ref.group = "0.5") %>%
adjust_pvalue(method = "bonferroni") %>%
select(group2,p.adj.signif),by=c("dose"="group2")) %>%
mutate(p.adj.signif = replace_na(p.adj.signif,""),across("p.adj.signif",str_replace,"ns","")) %>%
ungroup()
数据可视化
代码语言:javascript复制❝使用
scale_y_continuous(expand=c(0,0))
后会导致添加文本显示不全,此处通过创建两个文本几何对象来加大Y轴范围 ❞
ggplot(df,aes(dose,value_mean,fill=dose))
geom_errorbar(aes(ymax = value_mean sd, ymin = value_mean - sd),width = 0.1,color = "grey30")
geom_col(width=0.4)
geom_text(aes(label=p.adj.signif, y = value_mean sd 1.5), size = 3, color = "white",
show.legend = FALSE)
geom_text(aes(label=p.adj.signif, y = value_mean sd 0.2),size=5, color = "black",
show.legend = FALSE)
scale_y_continuous(expand=c(0,0))
theme_minimal()
theme(axis.title.x = element_blank(),
axis.line = element_line(color = "#3D4852"),
axis.ticks = element_line(color = "#3D4852"),
panel.grid.major.y = element_line(color = "#DAE1E7"),
panel.grid.major.x = element_blank(),
plot.margin = unit(rep(0.2,4),"cm"),
axis.text = element_text(size = 12, color = "#22292F"),
axis.title = element_text(size = 12, hjust = 1),
axis.title.y = element_text(margin = margin(r = 12)),
axis.text.y = element_text(margin = margin(r = 5)),
axis.text.x = element_text(margin = margin(t = 5)),
legend.position = "non")
scale_fill_brewer(palette="Blues")