❝本节来介绍如何使用R语言来做统计分析,通过「rstatix」包进行统计检验,完全使用
tidyverse
体系进行数据清洗及可视化,使用add_pvalue
,stat_pvalue_manual
两个函数来自定义添加p值 ❞
加载R包
代码语言:javascript复制library(tidyverse)
library(rstatix)
library(ggprism)
library(ggpubr)
library(ggsci)
数据清洗
代码语言:javascript复制df <- ToothGrowth %>%
mutate(dose=as.factor(dose)) %>%
group_by(dose) %>%
summarise(value_mean=mean(len),sd=sd(len),se=sd(len)/sqrt(n()))
统计分析
代码语言:javascript复制❝此处通过联接原数据来定义位置信息 ❞
stat.test <- ToothGrowth %>% t_test(data =., len ~ dose, ref.group = "0.5") %>%
mutate(p.adj.signif = replace_na(p.adj.signif,""),across("p.adj.signif",str_replace,"ns","")) %>%
select(group1,group2,p.adj,p.adj.signif) %>%
left_join(.,df,by=c("group2"="dose")) %>%
mutate(y.position=value_mean sd 0.3)
定义主题
代码语言:javascript复制theme_niwot <- function(){
theme_minimal()
theme(axis.title.x = element_blank(),
axis.line = element_line(color = "#3D4852"),
axis.ticks = element_line(color = "#3D4852"),
panel.grid.major.y = element_line(color = "#DAE1E7"),
panel.grid.major.x = element_blank(),
plot.margin = unit(rep(0.2,4),"cm"),
axis.text = element_text(size = 12, color = "#22292F"),
axis.title = element_text(size = 12, hjust = 1),
axis.title.y = element_text(margin = margin(r = 12)),
axis.text.y = element_text(margin = margin(r = 5)),
axis.text.x = element_text(margin = margin(t = 5)),
legend.position = "non")
}
数据可视化(1)
代码语言:javascript复制❝此次抛弃了上文通过
geom_text()
添加显著性标记的方法,改用add_pvalue
进行 ❞
df %>% ggplot(.,aes(dose,value_mean))
geom_errorbar(aes(ymax = value_mean sd, ymin = value_mean - sd),width = 0.1,color = "grey30")
geom_col(width=0.4,aes(fill=dose))
add_pvalue(stat.test,label = "p.adj.signif",label.size=6,
coord.flip = TRUE, remove.bracket = TRUE)
scale_y_continuous(expand=c(0,0),limits = c(0,33))
theme_niwot()
scale_fill_brewer(palette="Blues")
数据可视化(2)
- 分开添加线条,使用
tip.length
并分别自定义线条长度
df %>% ggplot(.,aes(dose,value_mean))
geom_errorbar(aes(ymax = value_mean sd, ymin = value_mean - sd),width = 0.1,color = "grey30")
geom_col(width=0.4,aes(fill=dose))
stat_pvalue_manual(stat.test %>% slice(1),label = "p.adj.signif",
label.size=6,tip.length = c(0.35,0.003),linetype=2)
add_pvalue(stat.test %>% slice(2),label = "p.adj.signif",label.size=6,tip.length = c(0.1,0.003))
scale_y_continuous(expand=c(0,0),limits = c(0,33))
theme_niwot()
scale_fill_brewer(palette="Blues")
统计分析2
代码语言:javascript复制stat.test2 <- ToothGrowth %>% mutate(dose=as.factor(dose)) %>% group_by(dose) %>%
t_test(len ~ supp) %>%
adjust_pvalue() %>% add_significance("p.adj") %>% add_xy_position(x="dose")
stat.test3 <- ToothGrowth %>%
t_test(len ~ dose,p.adjust.method = "bonferroni") %>%
adjust_pvalue() %>% add_significance("p.adj") %>% add_xy_position()
方差分析
代码语言:javascript复制res.aov <- ToothGrowth %>% mutate(dose=as.factor(dose)) %>% anova_test(len ~ dose)
方差分析事后检验
代码语言:javascript复制stat.test4 <- ToothGrowth %>% mutate(dose=as.factor(dose)) %>% tukey_hsd(len ~ dose) %>%
add_xy_position("dose")
代码语言:javascript复制ToothGrowth %>% mutate(dose=as.factor(dose)) %>%
ggplot(aes(dose,len))
stat_boxplot(geom = "errorbar",width=0.2,aes(fill = supp),position = position_dodge(1))
geom_boxplot(aes(fill= supp),position = position_dodge(1))
stat_pvalue_manual(stat.test4,label = "p.adj.signif",label.size=6,hide.ns = T)
labs(subtitle = get_test_label(res.aov, detailed = TRUE))
scale_y_continuous(expand=c(0,0),limits = c(0,42))
theme_niwot()
scale_fill_jco()
数据可视化(3)
代码语言:javascript复制❝按不同分子分别对组内组间进行统计分析,并对整体进行方差分析;想对于
add_pvalue
而言stat_pvalue_manual
的功能更加丰富,hide.ns = T
移除不显著的信息 ❞
ToothGrowth %>% mutate(dose=as.factor(dose)) %>%
ggplot(aes(dose,len))
stat_boxplot(geom = "errorbar",width=0.2,aes(fill = supp),position = position_dodge(1))
geom_boxplot(aes(fill= supp),position = position_dodge(1))
stat_pvalue_manual(stat.test2,label = "p.adj.signif",label.size=6,hide.ns = T)
stat_pvalue_manual(stat.test3,label = "p.adj.signif",label.size=6,hide.ns = T)
labs(subtitle = get_test_label(res.aov, detailed = TRUE))
scale_y_continuous(expand=c(0,0),limits = c(0,42))
theme_niwot()
scale_fill_jco()
参考资料
❝https://rpkgs.datanovia.com/rstatix/index.html https://www.datanovia.com/en/lessons/anova-in-r/ ❞