使用R优雅的批量计算相关性

2022-09-21 15:03:11 浏览数 (3)

❝本节来介绍如何通过R来批量做相关性分析,将通过两个小例子来进行介绍,1个for循环与另一个tidyverse体系;

加载R包

代码语言:javascript复制
library(tidyverse)
library(magrittr)
library(ggstatsplot)

案例一

导入数据

代码语言:javascript复制
Bats <- read.csv(file = "Bats_data.csv", header = T, stringsAsFactors = F)

Bats_subset <- select(Bats, Activity, Area.thinned:Distance.creek.water)

构建容器

代码语言:javascript复制
rows <- ncol(Bats_subset) - 1

Correlations <- data.frame(
  variable = character(length = rows),
  correlation = numeric(length = rows),
  stringsAsFactors = F
)

循环计算相关性

代码语言:javascript复制
for (i in 1:rows) {
  temp1 <- colnames(Bats_subset[i   1])
  temp2 <- cor(Bats_subset[, 1], Bats_subset[, i   1], method = "pearson")
  Correlations[i, 1] <- temp1
  Correlations[i, 2] <- temp2
}
代码语言:javascript复制
 variable correlation
1          Area.thinned -0.40890389
2    Time.since.thinned -0.02135752
3     Exclusion.thinned  0.17562438
4 Distance.murray.water -0.18071570
5  Distance.creek.water -0.09130258

案例二

❝此处计算单个基因与其余全部基因的相关性,小编在此介绍如何不使用循环用tidyverse体系函数来进行计算 ❞

代码语言:javascript复制
read_tsv("data.xls") %>% column_to_rownames(var="TCGA_id") %>% 
  pivot_longer(-B2M) %>% 
  pivot_longer(names_to = "name_2", values_to = "value_2",B2M) %>%
  group_by(name_2,name) %>% 
  summarise(cor= cor.test(value_2,value,method="spearman")$estimate,
            p.value = cor.test(value_2,value,method="spearman")$p.value) %>% as.data.frame() %>% 
  set_colnames(c("gene_1","gene_2","cor","pvalue")) %>% 
  filter(pvalue < 0.05) %>% 
  arrange(desc(abs(cor)))%>% 
  dplyr::slice(1:500)

❝可以看到与B2M相关性最高的为APOBEC3H基因 ❞

代码语言:javascript复制
   gene_1 gene_2     cor   pvalue
   <chr>  <chr>    <dbl>    <dbl>
 1 B2M    APOBEC3H 0.577 1.48e-25
 2 B2M    XCL2     0.577 1.51e-25
 3 B2M    KIR2DL4  0.565 2.31e-24
 4 B2M    TIFAB    0.565 2.63e-24
 5 B2M    XCL1     0.561 5.92e-24
 6 B2M    FUT7     0.558 1.21e-23
 7 B2M    ZBED2    0.557 1.57e-23
 8 B2M    IFNG     0.526 8.71e-21
 9 B2M    NCR3     0.524 1.39e-20
10 B2M    SSTR3    0.506 4.22e-19

数据可视化

❝此处用ggstatsplot包来进行结果的展示真是方便至极 ❞

代码语言:javascript复制
df2 <- read_tsv("data.xls")

ggscatterstats(data = df2,y = B2M,x=APOBEC3H,
               centrality.para = "mean",
               margins = "both",                                       
               xfill = "#CC79A7", 
               yfill = "#009E73", 
               marginal.type = "histogram")

0 人点赞