R自定义构建函数绘制相关性条形图

2022-09-21 15:16:01 浏览数 (1)

❝本节来介绍如何R来自定义构建函数来进行数据处理及绘图,在之前展示案例的基础上进行了一些小的改动,下面通过1个案例来进行展示;

加载R包

代码语言:javascript复制
library(tidyverse)
library(magrittr)

导入数据

代码语言:javascript复制
df <- read.delim("data.xls",row.names = 1,sep="t")

构建数据清洗函数

代码语言:javascript复制
plot_data_prep <- function(data,gene){
  
 plot_data <- data %>% 
    pivot_longer(-gene) %>% 
    pivot_longer(names_to = "name_2", values_to = "value_2",gene) %>%
    group_by(name_2,name) %>% 
    summarise(cor= cor.test(value_2,value,method="spearman")$estimate,
              p.value = cor.test(value_2,value,method="spearman")$p.value) %>% 
    set_colnames(c("gene_1","gene_2","cor","pvalue")) %>% 
    filter(pvalue < 0.05) %>% 
    arrange(desc(abs(cor)))%>% 
 #   dplyr::slice(1:500) %>% 
   mutate(p_signif=symnum(pvalue,corr = FALSE, na = FALSE,  
                          cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), 
                          symbols = c("***", "**", "*", ".", " "))) 
 
 return(plot_data)

}

❝上面我们定义了一个函数来计算某一基因与其它全部基因之间的相关性,下面我们来进行测序 ❞

代码语言:javascript复制
gene <- "B2M"
plot_data_prep(df,gene)
代码语言:javascript复制
  gene_1 gene_2     cor   pvalue p_signif 
   <chr>  <chr>    <dbl>    <dbl> <noquote>
 1 B2M    APOBEC3H 0.577 1.48e-25 ***      
 2 B2M    XCL2     0.577 1.51e-25 ***      
 3 B2M    KIR2DL4  0.565 2.31e-24 ***      
 4 B2M    TIFAB    0.565 2.63e-24 ***      
 5 B2M    XCL1     0.561 5.92e-24 ***      
 6 B2M    FUT7     0.558 1.21e-23 ***      
 7 B2M    ZBED2    0.557 1.57e-23 ***      
 8 B2M    IFNG     0.526 8.71e-21 ***      
 9 B2M    NCR3     0.524 1.39e-20 ***      
10 B2M    SSTR3    0.506 4.22e-19 *** 

接下来我们继续定义一个绘图函数来进行数据可视化

构建绘图函数

代码语言:javascript复制
make_plot <- function(data,x,y){
  ggplot(data)   
    geom_col(aes(x={{x}},y={{y}}, fill = {{x}} > 0),
             size = 0.25, color = "white") 
    geom_point(aes(x={{x}},y={{y}},
                   color=ifelse({{x}} > 0,"#BA7A70","#829BAB")),size=4.1) 
    geom_text(aes(x = ifelse({{x}} > 0, -.005, .005),y = {{y}}, 
                  label = gene_2,
                  color=ifelse({{x}} > 0,"#BA7A70","#829BAB"),
                  hjust = ifelse({{x}} > 0, 1, 0)),size = 3.8) 
    geom_vline(xintercept=0,size=1,color="grey40") 
    scale_y_discrete(expand = c(.025,.025)) 
    scale_fill_manual(values = c("TRUE" = "#BA7A70","FALSE" = "#829BAB")) 
    scale_color_manual(values = c("#829BAB","#BA7A70")) 
    coord_cartesian(clip = "off")    
    theme_minimal()   
    theme(panel.grid = element_blank(),
          plot.background = element_rect(fill="Aliceblue",color="Aliceblue"),
          axis.text.y =  element_blank(),
          axis.title = element_blank(),
          legend.position = "none",
          axis.text.x = element_text(face = "bold", size =rel(1), color = "black"))
}

构建好绘图函数后让我们来进行可视化的操作,由于原始数据较多在此我们筛选一部分数据进行可视化操作

数据筛选

代码语言:javascript复制
p <- plot_data_prep(df,gene) %>% select(1,2,3,5) %>% sample_frac(.1) %>% 
  arrange(cor)

p$gene_2 <- factor(p$gene_2,levels = p$gene_2)

数据可视化

代码语言:javascript复制
make_plot(p,cor,gene_2)

0 人点赞