[R包分享] ggsurvfit优雅的进行生存分析

2022-09-21 15:42:11 浏览数 (1)

❝本节来介绍一个做生存分析的新包「ggsurvfit」,完美兼容「ggplot2」语法;下面来简单介绍一下,具体请查看作者官方文档 地址:https://github.com/ddsjoberg/ggsurvfit/ ❞

加载R包

代码语言:javascript复制
devtools::install_github("ddsjoberg/ggsurvfit")
library(tidyverse)
library(ggsurvfit)
library(gghighlight)
install.packages("tidycmprsk")
library(tidycmprsk)

案例1

代码语言:javascript复制
p <- survfit2(Surv(time, status) ~ sex, data = df_lung) %>% 
  ggsurvfit(size = 1) 
  add_censor_mark() 
  add_confidence_interval()  
  add_risktable(theme=theme_test() 
                  theme(axis.title = element_blank(),
                        axis.text.x = element_blank(),
                        axis.ticks.x=element_blank(),
                        axis.text.y = element_text(color="black",size=10)),
                combine_groups=F) 
  add_quantile(color ="grey80",size=0.8,linetype =5)

❝可以看到语法完全适用于「ggplot2」通过 「 」 来进行图层的叠加,下面来介绍如何修改主题及其它度量参数 ❞

修改主题

代码语言:javascript复制
p  
  theme(legend.position = "bottom",
        legend.title = element_blank())  
  labs(
    y = "Probability of survival",
    x = "Months since treatment",
    title = "Kaplan-Meier Estimate of Survival by Sex") 
  scale_y_continuous(label = scales::percent, expand = c(0.01, 0))  
  scale_x_continuous(breaks = 0:5*6, expand = c(0.02, 0))

分面操作

代码语言:javascript复制
survfit2(Surv(time, status) ~ sex, data = df_lung) %>% 
  ggsurvfit(size = 1)  
  add_censor_mark(shape = 4)  
  add_quantile(linetype = 3, size = 1)  
  add_confidence_interval()  
  facet_grid(~strata)

❝还可进行分面操作,那么这样就会有了更多的施展空间 ❞

高亮显示部分数据

代码语言:javascript复制
survfit2(Surv(time, status) ~ ph.ecog, data = df_lung) %>% 
  ggsurvfit(size = 1)  
  ggplot2::labs(color = "Gender")  
  gghighlight::gghighlight(strata == "Asymptomatic", calculate_per_facet = TRUE)

累积发病率

代码语言:javascript复制
cuminc(Surv(ttdeath, death_cr) ~ trt, trial) %>%
  ggcuminc(outcome = "death from cancer", size = 1)  
  add_confidence_interval()  
  add_quantile(y_value = 0.20, size = 1)  
  add_risktable()  
  labs(x = "Months Since Treatment")  
  theme(legend.position = "bottom")  
  scale_y_continuous(label = scales::percent, expand = c(0.02, 0))  
  scale_x_continuous(breaks = 0:4 * 6, expand = c(0.02, 0))

❝可以看到使用「ggsurvfit」来进行生存分析图表绘制给了我们更大的操作空间,此包还在不断完善中,具体内容请查看作者官方文档ggsurvfit

0 人点赞