上次介绍了康托三分集后,算是给分形的开了一个引子,这次在此基础上介绍一下分形几何中分形的基本概念.俗话说的好,应该是物理学家惠勒曾经说过,“谁不知道熵概念就不能被认为是科学上的文化人,将来谁不知道分形概念,也不能称为有知识。”这不,未来要想要成为文化人还得去了解一下分形的概念.当然,你了解了分形的概念也不一定是"文化人",这只是一个必要条件.其实也不必灰心,"万丈高楼平地起,打好基础最重要".好吧,闲话就说这么多,下面就开始学习分形吧.
首先还是要说下分形的英文单词为Fractal,分形,具有以非整数维形式充填空间的形态特征。通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。分形一词,是芒德勃罗创造出来的,其原意具有不规则、支离破碎等意义。1973年,芒德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形的设想。
据芒德布罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。在70年代中期以前,芒德布罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。芒德布罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星等。它们的特点都是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形。
另外,分形是一个数学术语,也是一套以分形特征为研究主题的数学理论。分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科,是研究一类现象特征的新的数学分科,相对于其几何形态,它与微分方程与动力系统理论的联系更为显著。分形的自相似特征可以是统计自相似,构成分形也不限于几何形式,时间过程也可以,故而与鞅论关系密切。分形理论是在上世纪70年代由芒德布罗几乎集一己之力创立的,但其严格的数学基础之一——芒德布罗集,却是70年代末芒德布罗及布鲁克斯、马蒂尔斯基以及道阿迪、哈伯德、沙斯顿等人几乎同时分别建立完善的,他们的思想都源自上世纪前叶一些前辈如法图、莱维、朱利亚的有关思想。
好了,基础概念介绍完毕,再来感受一下分形的视觉吧,如下图: