那流形学习是什么呢?为了好懂,我尽可能应用少的数学概念来解释这个东西。所谓流形(manifold)就是一般的几何对象的总称。比如人,有中国人、美国人等等;流形就包括各种维数的曲线曲面等。和一般的降维分析一样,流形学习把一组在高维空间中的数据在低维空间中重新表示。和以往方法不同的是,在流形学习中有一个假设,就是所处理的数据采样于一个潜在的流形上,或是说对于这组数据存在一个潜在的流形。对于不同的方法,对于流形性质的要求各不相同,这也就产生了在流形假设下的各种不同性质的假设,比如在Laplacian Eigenmaps中要假设这个流形是紧致黎曼流形等。对于描述流形上的点,我们要用坐标,而流形上本身是没有坐标的,所以为了表示流形上的点,必须把流形放入外围空间(ambient space)中,那末流形上的点就可以用外围空间的坐标来表示。比如R^3中的球面是个2维的曲面,因为球面上只有两个自由度,但是球面上的点一般是用外围R^3空间中的坐标表示的,所以我们看到的R^3中球面上的点有3个数来表示的。当然球面还有柱坐标球坐标等表示。对于R^3中的球面来说,那么流形学习可以粗略的概括为给出R^3中的表示,在保持球面上点某些几何性质的条件下,找出找到一组对应的内蕴坐标(intrinsic coordinate)表示,显然这个表示应该是两维的,因为球面的维数是两维的。这个过程也叫参数化(parameterization)。直观上来说,就是把这个球面尽量好的展开在通过原点的平面上。在PAMI中,这样的低维表示也叫内蕴特征(intrinsic feature)。一般外围空间的维数也叫观察维数,其表示也叫自然坐标(外围空间是欧式空间)表示,在统计中一般叫observation。
流形学习的概念
2022-09-22 11:24:10
浏览数 (1)