浏览器的主要组成部分
- ⽤户界⾯ 包括地址栏、前进/后退按钮、书签菜单等。除了浏览器主窗⼝显示的您请求的⻚⾯外,其他显示的各个部分都属于⽤户界⾯。
- 浏览器引擎 在⽤户界⾯和呈现引擎之间传送指令。
- 呈现引擎 负责显示请求的内容。如果请求的内容是 HTML,它就负责解析 HTML 和 CSS 内容,并将解析后的内容显示在屏幕上。
- ⽹络 ⽤于⽹络调⽤,⽐如 HTTP 请求。其接⼝与平台⽆关,并为所有平台提供底层实现。
- ⽤户界⾯后端 ⽤于绘制基本的窗⼝⼩部件,⽐如组合框和窗⼝。其公开了与平台⽆关的通⽤接⼝,⽽在底层使⽤操作系统的⽤户界⾯⽅法。
- JavaScript 解释器。⽤于解析和执⾏ JavaScript 代码。
- 数据存储 这是持久层。浏览器需要在硬盘上保存各种数据,例如 Cookie。新的 HTML 规范 (HTML5) 定义了“⽹络数据库”,这是⼀个完整(但是轻便)的浏览器内数据库。
值得注意的是,和⼤多数浏览器不同,Chrome 浏览器的每个标签⻚都分别对应⼀个呈现引擎实例。每个标签⻚都是⼀个独⽴的进程。
webpack配置入口出口
代码语言:text复制module.exports={
//入口文件的配置项
entry:{},
//出口文件的配置项
output:{},
//模块:例如解读CSS,图片如何转换,压缩
module:{},
//插件,用于生产模版和各项功能
plugins:[],
//配置webpack开发服务功能
devServer:{}
}
简单描述了一下这几个属性是干什么的。
描述一下npm run dev / npm run build执行的是哪些文件
通过配置proxyTable来达到开发环境跨域的问题,然后又可以扩展和他聊聊跨域的产生,如何跨域
最后可以在聊聊webpack的优化,例如babel-loader的优化,gzip压缩等等
前端进阶面试题详细解答
img的srcset属性的作⽤?
响应式页面中经常用到根据屏幕密度设置不同的图片。这时就用到了 img 标签的srcset属性。srcset属性用于设置不同屏幕密度下,img 会自动加载不同的图片。用法如下:
代码语言:html复制<img src="image-128.png" srcset="image-256.png 2x" />
使用上面的代码,就能实现在屏幕密度为1x的情况下加载image-128.png, 屏幕密度为2x时加载image-256.png。
按照上面的实现,不同的屏幕密度都要设置图片地址,目前的屏幕密度有1x,2x,3x,4x四种,如果每一个图片都设置4张图片,加载就会很慢。所以就有了新的srcset标准。代码如下:
代码语言:html复制<img src="image-128.png"
srcset="image-128.png 128w, image-256.png 256w, image-512.png 512w"
sizes="(max-width: 360px) 340px, 128px" />
其中srcset指定图片的地址和对应的图片质量。sizes用来设置图片的尺寸零界点。对于 srcset 中的 w 单位,可以理解成图片质量。如果可视区域小于这个质量的值,就可以使用。浏览器会自动选择一个最小的可用图片。
sizes语法如下:
代码语言:html复制sizes="[media query] [length], [media query] [length] ... "
sizes就是指默认显示128px, 如果视区宽度大于360px, 则显示340px。
setState
在了解setState之前,我们先来简单了解下 React 一个包装结构: Transaction:
事务 (Transaction)
是 React 中的一个调用结构,用于包装一个方法,结构为: initialize - perform(method) - close。通过事务,可以统一管理一个方法的开始与结束;处于事务流中,表示进程正在执行一些操作
- setState: React 中用于修改状态,更新视图。它具有以下特点:
异步与同步: setState并不是单纯的异步或同步,这其实与调用时的环境相关:
- 在合成事件 和 生命周期钩子 (除 componentDidUpdate) 中,setState是"异步"的;
- 原因: 因为在setState的实现中,有一个判断: 当更新策略正在事务流的执行中时,该组件更新会被推入dirtyComponents队列中等待执行;否则,开始执行batchedUpdates队列更新;
- 在生命周期钩子调用中,更新策略都处于更新之前,组件仍处于事务流中,而componentDidUpdate是在更新之后,此时组件已经不在事务流中了,因此则会同步执行;
- 在合成事件中,React 是基于 事务流完成的事件委托机制 实现,也是处于事务流中;
- 问题: 无法在setState后马上从this.state上获取更新后的值。
- 解决: 如果需要马上同步去获取新值,setState其实是可以传入第二个参数的。setState(updater, callback),在回调中即可获取最新值;
- 原因: 因为在setState的实现中,有一个判断: 当更新策略正在事务流的执行中时,该组件更新会被推入dirtyComponents队列中等待执行;否则,开始执行batchedUpdates队列更新;
- 在 原生事件 和 setTimeout 中,setState是同步的,可以马上获取更新后的值;
- 原因: 原生事件是浏览器本身的实现,与事务流无关,自然是同步;而setTimeout是放置于定时器线程中延后执行,此时事务流已结束,因此也是同步;
- 批量更新 : 在 合成事件 和 生命周期钩子 中,setState更新队列时,存储的是 合并状态(Object.assign)。因此前面设置的 key 值会被后面所覆盖,最终只会执行一次更新;
- 函数式 : 由于 Fiber 及 合并 的问题,官方推荐可以传入 函数 的形式。setState(fn),在fn中返回新的state对象即可,例如this.setState((state, props) => newState);
- 使用函数式,可以用于避免setState的批量更新的逻辑,传入的函数将会被 顺序调用;
注意事项:
- setState 合并,在 合成事件 和 生命周期钩子 中多次连续调用会被优化为一次;
- 当组件已被销毁,如果再次调用setState,React 会报错警告,通常有两种解决办法
- 将数据挂载到外部,通过 props 传入,如放到 Redux 或 父级中;
- 在组件内部维护一个状态量 (isUnmounted),componentWillUnmount中标记为 true,在setState前进行判断;
总结
setState 并非真异步,只是看上去像异步。在源码中,通过
isBatchingUpdates
来判断
setState
是先存进state
队列还是直接更新,如果值为 true 则执行异步操作,为 false 则直接更新。- 那么什么情况下
isBatchingUpdates
会为true
呢?在 React 可以控制的地方,就为 true,比如在 React 生命周期事件和合成事件中,都会走合并操作,延迟更新的策略。 - 但在 React 无法控制的地方,比如原生事件,具体就是在
addEventListener
、setTimeout
、setInterval
等事件中,就只能同步更新。
一般认为,
做异步设计是为了性能优化、减少渲染次数
,React 团队还补充了两点。
- 保持内部一致性。如果将 state 改为同步更新,那尽管 state 的更新是同步的,但是 props不是。
- 启用并发更新,完成异步渲染。
setState
只有在 React 自身的合成事件和钩子函数中是异步的,在原生事件和 setTimeout 中都是同步的setState
的异步并不是说内部由异步代码实现,其实本身执行的过程和代码都是同步的,只是合成事件和钩子函数中没法立马拿到更新后的值,形成了所谓的异步。当然可以通过 setState 的第二个参数中的 callback 拿到更新后的结果setState
的批量更新优化也是建立在异步(合成事件、钩子函数)之上的,在原生事件和 setTimeout 中不会批量更新,在异步中如果对同一个值进行多次 setState,setState 的批量更新策略会对其进行覆盖,去最后一次的执行,如果是同时 setState 多个不同的值,在更新时会对其进行合并批量更新- 合成事件中是异步
- 钩子函数中的是异步
- 原生事件中是同步
- setTimeout中是同步
这是一道经常会出现的 React setState 笔试题:下面的代码输出什么呢?
代码语言:javascript复制class Test extends React.Component {
state = {
count: 0
};
componentDidMount() {
this.setState({count: this.state.count 1});
console.log(this.state.count);
this.setState({count: this.state.count 1});
console.log(this.state.count);
setTimeout(() => {
this.setState({count: this.state.count 1});
console.log(this.state.count);
this.setState({count: this.state.count 1});
console.log(this.state.count);
}, 0);
}
render() {
return null;
}
};
我们可以进行如下的分析:
- 首先第一次和第二次的
console.log
,都在 React 的生命周期事件中,所以是异步的处理方式,则输出都为0
; - 而在
setTimeout
中的console.log
处于原生事件中,所以会同步的处理再输出结果,但需要注意,虽然count
在前面经过了两次的this.state.count 1
,但是每次获取的this.state.count
都是初始化时的值,也就是0
; - 所以此时
count
是1
,那么后续在setTimeout
中的输出则是2
和3
。
所以完整答案是 0,0,2,3
同步场景
异步场景中的案例使我们建立了这样一个认知:setState 是异步的,但下面这个案例又会颠覆你的认知。如果我们将 setState 放在 setTimeout 事件中,那情况就完全不同了。
代码语言:javascript复制class Test extends Component {
state = {
count: 0
}
componentDidMount(){
this.setState({ count: this.state.count 1 });
console.log(this.state.count);
setTimeout(() => {
this.setState({ count: this.state.count 1 });
console.log("setTimeout: " this.state.count);
}, 0);
}
render(){
...
}
}
那这时输出的应该是什么呢?如果你认为是 0,0,那么又错了。
正确的结果是 0,2
。因为 setState
并不是真正的异步函数,它实际上是通过队列延迟执行操作实现的,通过 isBatchingUpdates 来判断 setState 是先存进 state 队列还是直接更新。值为 true 则执行异步操作,false 则直接同步更新
接下来这个案例的答案是什么呢
代码语言:javascript复制class Test extends Component {
state = {
count: 0
}
componentDidMount(){
this.setState({
count: this.state.count 1
}, () => {
console.log(this.state.count)
})
this.setState({
count: this.state.count 1
}, () => {
console.log(this.state.count)
})
}
render(){
...
}
}
如果你觉得答案是 1,2
,那肯定就错了。这种迷惑性极强的考题在面试中非常常见,因为它反直觉。
如果重新仔细思考,你会发现当前拿到的 this.state.count
的值并没有变化,都是 0
,所以输出结果应该是 1,1
。
当然,也可以在 setState
函数中获取修改后的 state
值进行修改。
class Test extends Component {
state = {
count: 0
}
componentDidMount(){
this.setState(
preState=> ({
count:preState.count 1
}),()=>{
console.log(this.state.count)
})
this.setState(
preState=>({
count:preState.count 1
}),()=>{
console.log(this.state.count)
})
}
render(){
...
}
}
这些通通是异步的回调,如果你以为输出结果是 1,2,那就又错了,实际上是 2,2
。
为什么会这样呢?当调用 setState
函数时,就会把当前的操作放入队列中
。React 根据队列内容,合并 state 数据,完成后再逐一执行回调,根据结果更新虚拟 DOM,触发渲染。所以回调时,state 已经合并计算完成了
,输出的结果就是 2,2
了。
JS闭包,你了解多少?
应该有面试官问过你:
- 什么是闭包?
- 闭包有哪些实际运用场景?
- 闭包是如何产生的?
- 闭包产生的变量如何被回收?
这些问题其实都可以被看作是同一个问题,那就是面试官在问你:你对JS闭包了解多少?
来总结一下我听到过的答案,尽量完全复原候选人面试的时候说的原话。
答案1:
就是一个function
里面return
了一个子函数,子函数访问了外面那个函数的变量。
答案2:
for循环里面可以用闭包来解决问题。
for(var i = 0; i < 10; i ){
setTimeout(()=>console.log(i),0)
}
// 控制台输出10遍10.
for(var i = 0; i < 10; i ){
(function(a){
setTimeout(()=>console.log(a),0)
})(i)
}
// 控制台输出0-9
答案3:
当前作用域产产生了对父作用域的引用。
答案4:
不知道。是跟浏览器的垃圾回收机制有关吗?
开杠了。请问,小伙伴的答案和以上的内容有多少相似程度?
其实,拿着这些问题好好想想,你就会发现这些问题都只是为了最终那一个问题。
闭包的底层实现原理
1. JS执行上下文
我们都知道,我们手写的js代码是要经过浏览器V8进行预编译后才能真正的被执行。例如变量提升、函数提升。举个栗子。
代码语言:javascript复制// 栗子:
var d = 'abc';
function a(){
console.log("函数a");
};
console.log(a); // ƒ a(){ console.log("函数a"); }
a(); // '函数a'
var a = "变量a";
console.log(a); // '变量a'
a(); // a is not a function
var c = 123;
// 输出结果及顺序:
// ƒ a(){ console.log("函数a"); }
// '函数a'
// '变量a'
// a is not a function
// 栗子预编后相当于:
function a(){
console.log("函数a");
};
var d;
console.log(a); // ƒ a(){ console.log("函数a"); }
a(); // '函数a'
a = "变量a"; // 此时变量a赋值,函数声明被覆盖
console.log(a); // "变量a"
a(); // a is not a function
那么问题来了。 请问是谁来执行预编译操作的?那这个谁又是在哪里进行预编译的?
是的,你的疑惑没有错。js代码运行需要一个运行环境,那这个环境就是执行上下文。 是的,js运行前的预编译也是在这个环境中进行。
js执行上下文分三种:
全局执行上下文
: 代码开始执行时首先进入的环境。函数执行上下文
:函数调用时,会开始执行函数中的代码。eval执行上下文
:不建议使用,可忽略。
那么,执行上下文的周期,分为两个阶段:
创建阶段
- 创建词法环境
- 生成变量对象(
VO
),建立作用域链、作用域链、作用域链(重要的事说三遍) - 确认
this
指向,并绑定this
执行阶段
。这个阶段进行变量赋值,函数引用及执行代码。
你现在猜猜看,预编译是发生在什么时候?
噢,我忘记说了,其实与编译还有另一个称呼:执行期上下文
。
预编译发生在函数执行之前。预编译四部曲为:
- 创建
AO
对象 - 找形参和变量声明,将变量和形参作为AO属性名,值为
undefined
- 将实参和形参相统一
- 在函数体里找到函数声明,值赋予函数体。最后程序输出变量值的时候,就是从
AO
对象中拿。
所以,预编译真正的结果是:
代码语言:javascript复制var AO = {
a = function a(){console.log("函数a");};
d = 'abc'
}
我们重新来。
1. 什么叫变量对象?
变量对象是 js
代码在进入执行上下文时,js
引擎在内存中建立的一个对象,用来存放当前执行环境中的变量。
2. 变量对象(VO)的创建过程
变量对象的创建,是在执行上下文创建阶段,依次经过以下三个过程:
- 创建
arguments
对象。
对于函数执行环境,首先查询是否有传入的实参,如果有,则会将参数名是实参值组成的键值对放入arguments
对象中。否则,将参数名和 undefined
组成的键值对放入 arguments
对象中。
//举个栗子
function bar(a, b, c) {
console.log(arguments); // [1, 2]
console.log(arguments[2]); // undefined
}
bar(1,2)
- 当遇到同名的函数时,后面的会覆盖前面的。
console.log(a); // function a() {console.log('Is a ?') }
function a() {
console.log('Is a');
}
function a() {
console.log('Is a ?')
}
/**ps: 在执行第一行代码之前,函数声明已经创建完成.后面的对之前的声明进行了覆盖。**/
- 检查当前环境中的变量声明并赋值为
undefined
。当遇到同名的函数声明,为了避免函数被赋值为undefined
,会忽略此声明
console.log(a); // function a() {console.log('Is a ?') }
console.log(b); // undefined
function a() {
console.log('Is a ');
}
function a() {
console.log('Is a ?');
}
var b = 'Is b';
var a = 10086;
/**这段代码执行一下,你会发现 a 打印结果仍旧是一个函数,而 b 则是 undefined。**/
根据以上三个步骤,对于变量提升也就知道是怎么回事了。
3. 变量对象变为活动对象
执行上下文的第二个阶段,称为执行阶段,在此时,会进行变量赋值,函数引用并执行其他代码,此时,变量对象变为活动对象。
我们还是举上面的例子:
代码语言:javascript复制console.log(a); // function a() {console.log('fjdsfs') }
console.log(b); // undefined
function a() {
console.log('Is a');
}
function a() {
console.log('Is a?');
}
var b = 'Is b';
console.log(b); // 'Is b'
var a = 10086;
console.log(a); // 10086
var b = 'Is b?';
console.log(b); // 'Is b?'
在上面的代码中,代码真正开始执行是从第一行 console.log() 开始的,自这之前,执行上下文是这样的:
代码语言:javascript复制// 创建过程
EC= {
VO: {}; // 创建变量对象
scopeChain: {}; // 作用域链
}
VO = {
argument: {...}; // 当前为全局上下文,所以这个属性值是空的
a: <a reference> // 函数 a 的引用地址 b: undefiend // 见上文创建变量对象的第三步}
词法作用域(Lexical scope
)
这里想说明,我们在函数执行上下文中有变量,在全局执行上下文中有变量。JavaScript
的一个复杂之处在于它如何查找变量,如果在函数执行上下文中找不到变量,它将在调用上下文中寻找它,如果在它的调用上下文中没有找到,就一直往上一级,直到它在全局执行上下文中查找为止。(如果最后找不到,它就是 undefined
)。
再来举个栗子:
代码语言:javascript复制 1: let top = 0; //
2: function createWarp() {
3: function add(a, b) {
4: let ret = a b
5: return ret
6: }
7: return add
8: }
9: let sum = createWarp()
10: let result = sum(top, 8)
11: console.log('result:',result)
分析过程如下:
- 在全局上下文中声明变量
top
并赋值为0. - 2 - 8行。在全局执行上下文中声明了一个名为
createWarp
的变量,并为其分配了一个函数定义。其中第3-7行描述了其函数定义,并将函数定义存储到那个变量(createWarp
)中。 - 第9行。我们在全局执行上下文中声明了一个名为
sum
的新变量,暂时,值为undefined
。 - 第9行。遇到
()
,表明需要执行或调用一个函数。那么查找全局执行上下文的内存并查找名为createWarp
的变量。 明显,已经在步骤2中创建完毕。接着,调用它。 - 调用函数时,回到第2行。创建一个新的
createWarp
执行上下文。我们可以在createWarp
的执行上下文中创建自有变量。js
引擎createWarp
的上下文添加到调用堆栈(call stack
)。因为这个函数没有参数,直接跳到它的主体部分. - 3 - 6 行。我们有一个新的函数声明,在
createWarp
执行上下文中创建一个变量add
。add
只存在于createWarp
执行上下文中, 其函数定义存储在名为add
的自有变量中。 - 第7行,我们返回变量
add
的内容。js引擎查找一个名为add
的变量并找到它. 第4行和第5行括号之间的内容构成该函数定义。 createWarp
调用完毕,createWarp
执行上下文将被销毁。add 变量也跟着被销毁。 但add
函数定义仍然存在,因为它返回并赋值给了sum
变量。 (ps:这才是闭包产生的变量存于内存当中的真相
)- 接下来就是简单的执行过程,不再赘述。。
- ……
- 代码执行完毕,全局执行上下文被销毁。sum 和 result 也跟着被销毁。
小结一下
现在,如果再让你回答什么是闭包,你能答出多少?
其实,大家说的都对。不管是函数返回一个函数,还是产生了外部作用域的引用,都是有道理的。
所以,什么是闭包?
- 解释一下作用域链是如何产生的。
- 解释一下js执行上下文的创建、执行过程。
- 解释一下闭包所产生的变量放在哪了。
- 最后请把以上3点结合起来说给面试官听。
常见的DOM操作有哪些
1)DOM 节点的获取
DOM 节点的获取的API及使用:
代码语言:javascript复制getElementById // 按照 id 查询
getElementsByTagName // 按照标签名查询
getElementsByClassName // 按照类名查询
querySelectorAll // 按照 css 选择器查询
// 按照 id 查询
var imooc = document.getElementById('imooc') // 查询到 id 为 imooc 的元素
// 按照标签名查询
var pList = document.getElementsByTagName('p') // 查询到标签为 p 的集合
console.log(divList.length)
console.log(divList[0])
// 按照类名查询
var moocList = document.getElementsByClassName('mooc') // 查询到类名为 mooc 的集合
// 按照 css 选择器查询
var pList = document.querySelectorAll('.mooc') // 查询到类名为 mooc 的集合
2)DOM 节点的创建
创建一个新节点,并把它添加到指定节点的后面。 已知的 HTML 结构如下:
代码语言:html复制<html>
<head>
<title>DEMO</title>
</head>
<body>
<div id="container">
<h1 id="title">我是标题</h1>
</div>
</body>
</html>
要求添加一个有内容的 span 节点到 id 为 title 的节点后面,做法就是:
代码语言:javascript复制// 首先获取父节点
var container = document.getElementById('container')
// 创建新节点
var targetSpan = document.createElement('span')
// 设置 span 节点的内容
targetSpan.innerHTML = 'hello world'
// 把新创建的元素塞进父节点里去
container.appendChild(targetSpan)
3)DOM 节点的删除
删除指定的 DOM 节点, 已知的 HTML 结构如下:
代码语言:javascript复制<html>
<head>
<title>DEMO</title>
</head>
<body>
<div id="container"> <h1 id="title">我是标题</h1>
</div> </body>
</html>
需要删除 id 为 title 的元素,做法是:
代码语言:javascript复制// 获取目标元素的父元素
var container = document.getElementById('container')
// 获取目标元素
var targetNode = document.getElementById('title')
// 删除目标元素
container.removeChild(targetNode)
或者通过子节点数组来完成删除:
代码语言:javascript复制// 获取目标元素的父元素var container = document.getElementById('container')// 获取目标元素var targetNode = container.childNodes[1]// 删除目标元素container.removeChild(targetNode)
4)修改 DOM 元素
修改 DOM 元素这个动作可以分很多维度,比如说移动 DOM 元素的位置,修改 DOM 元素的属性等。
将指定的两个 DOM 元素交换位置, 已知的 HTML 结构如下:
代码语言:javascript复制<html>
<head>
<title>DEMO</title>
</head>
<body>
<div id="container"> <h1 id="title">我是标题</h1>
<p id="content">我是内容</p>
</div> </body>
</html>
现在需要调换 title 和 content 的位置,可以考虑 insertBefore 或者 appendChild:
代码语言:javascript复制// 获取父元素
var container = document.getElementById('container')
// 获取两个需要被交换的元素
var title = document.getElementById('title')
var content = document.getElementById('content')
// 交换两个元素,把 content 置于 title 前面
container.insertBefore(content, title)
JavaScript有哪些数据类型,它们的区别?
JavaScript共有八种数据类型,分别是 Undefined、Null、Boolean、Number、String、Object、Symbol、BigInt。
其中 Symbol 和 BigInt 是ES6 中新增的数据类型:
- Symbol 代表创建后独一无二且不可变的数据类型,它主要是为了解决可能出现的全局变量冲突的问题。
- BigInt 是一种数字类型的数据,它可以表示任意精度格式的整数,使用 BigInt 可以安全地存储和操作大整数,即使这个数已经超出了 Number 能够表示的安全整数范围。
这些数据可以分为原始数据类型和引用数据类型:
- 栈:原始数据类型(Undefined、Null、Boolean、Number、String)
- 堆:引用数据类型(对象、数组和函数)
两种类型的区别在于存储位置的不同:
- 原始数据类型直接存储在栈(stack)中的简单数据段,占据空间小、大小固定,属于被频繁使用数据,所以放入栈中存储;
- 引用数据类型存储在堆(heap)中的对象,占据空间大、大小不固定。如果存储在栈中,将会影响程序运行的性能;引用数据类型在栈中存储了指针,该指针指向堆中该实体的起始地址。当解释器寻找引用值时,会首先检索其在栈中的地址,取得地址后从堆中获得实体。
堆和栈的概念存在于数据结构和操作系统内存中,在数据结构中:
- 在数据结构中,栈中数据的存取方式为先进后出。
- 堆是一个优先队列,是按优先级来进行排序的,优先级可以按照大小来规定。
在操作系统中,内存被分为栈区和堆区:
- 栈区内存由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
- 堆区内存一般由开发着分配释放,若开发者不释放,程序结束时可能由垃圾回收机制回收。
HTTP 1.1 和 HTTP 2.0 的区别
- 二进制协议:HTTP/2 是一个二进制协议。在 HTTP/1.1 版中,报文的头信息必须是文本(ASCII 编码),数据体可以是文本,也可以是二进制。HTTP/2 则是一个彻底的二进制协议,头信息和数据体都是二进制,并且统称为"帧",可以分为头信息帧和数据帧。 帧的概念是它实现多路复用的基础。
- 多路复用: HTTP/2 实现了多路复用,HTTP/2 仍然复用 TCP 连接,但是在一个连接里,客户端和服务器都可以同时发送多个请求或回应,而且不用按照顺序一一发送,这样就避免了"队头堵塞"【1】的问题。
- 数据流: HTTP/2 使用了数据流的概念,因为 HTTP/2 的数据包是不按顺序发送的,同一个连接里面连续的数据包,可能属于不同的请求。因此,必须要对数据包做标记,指出它属于哪个请求。HTTP/2 将每个请求或回应的所有数据包,称为一个数据流。每个数据流都有一个独一无二的编号。数据包发送时,都必须标记数据流 ID ,用来区分它属于哪个数据流。
- 头信息压缩: HTTP/2 实现了头信息压缩,由于 HTTP 1.1 协议不带状态,每次请求都必须附上所有信息。所以,请求的很多字段都是重复的,比如 Cookie 和 User Agent ,一模一样的内容,每次请求都必须附带,这会浪费很多带宽,也影响速度。HTTP/2 对这一点做了优化,引入了头信息压缩机制。一方面,头信息使用 gzip 或 compress 压缩后再发送;另一方面,客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就能提高速度了。
- 服务器推送: HTTP/2 允许服务器未经请求,主动向客户端发送资源,这叫做服务器推送。使用服务器推送提前给客户端推送必要的资源,这样就可以相对减少一些延迟时间。这里需要注意的是 http2 下服务器主动推送的是静态资源,和 WebSocket 以及使用 SSE 等方式向客户端发送即时数据的推送是不同的。
【1】队头堵塞:
队头阻塞是由 HTTP 基本的“请求 - 应答”模型所导致的。HTTP 规定报文必须是“一发一收”,这就形成了一个先进先出的“串行”队列。队列里的请求是没有优先级的,只有入队的先后顺序,排在最前面的请求会被最优先处理。如果队首的请求因为处理的太慢耽误了时间,那么队列里后面的所有请求也不得不跟着一起等待,结果就是其他的请求承担了不应有的时间成本,造成了队头堵塞的现象。
Proxy 可以实现什么功能?
在 Vue3.0 中通过 Proxy
来替换原本的 Object.defineProperty
来实现数据响应式。
Proxy 是 ES6 中新增的功能,它可以用来自定义对象中的操作。
代码语言:javascript复制let p = new Proxy(target, handler)
target
代表需要添加代理的对象,handler
用来自定义对象中的操作,比如可以用来自定义 set
或者 get
函数。
下面来通过 Proxy
来实现一个数据响应式:
let onWatch = (obj, setBind, getLogger) => {
let handler = {
get(target, property, receiver) {
getLogger(target, property)
return Reflect.get(target, property, receiver)
},
set(target, property, value, receiver) {
setBind(value, property)
return Reflect.set(target, property, value)
}
}
return new Proxy(obj, handler)
}
let obj = { a: 1 }
let p = onWatch(
obj,
(v, property) => {
console.log(`监听到属性${property}改变为${v}`)
},
(target, property) => {
console.log(`'${property}' = ${target[property]}`)
}
)
p.a = 2 // 监听到属性a改变
p.a // 'a' = 2
在上述代码中,通过自定义 set
和 get
函数的方式,在原本的逻辑中插入了我们的函数逻辑,实现了在对对象任何属性进行读写时发出通知。
当然这是简单版的响应式实现,如果需要实现一个 Vue 中的响应式,需要在 get
中收集依赖,在 set
派发更新,之所以 Vue3.0 要使用 Proxy
替换原本的 API 原因在于 Proxy
无需一层层递归为每个属性添加代理,一次即可完成以上操作,性能上更好,并且原本的实现有一些数据更新不能监听到,但是 Proxy
可以完美监听到任何方式的数据改变,唯一缺陷就是浏览器的兼容性不好。
Promise.resolve
代码语言:javascript复制Promise.resolve = function(value) {
// 1.如果 value 参数是一个 Promise 对象,则原封不动返回该对象
if(value instanceof Promise) return value;
// 2.如果 value 参数是一个具有 then 方法的对象,则将这个对象转为 Promise 对象,并立即执行它的then方法
if(typeof value === "object" && 'then' in value) {
return new Promise((resolve, reject) => {
value.then(resolve, reject);
});
}
// 3.否则返回一个新的 Promise 对象,状态为 fulfilled
return new Promise(resolve => resolve(value));
}
掌握页面的加载过程
网页加载流程
- 当我们打开网址的时候,浏览器会从服务器中获取到 HTML 内容
- 浏览器获取到 HTML 内容后,就开始从上到下解析 HTML 的元素
<head>
元素内容会先被解析,此时浏览器还没开始渲染页面
- 我们看到
<head>
元素里有用于描述页面元数据的<meta>
元素,还有一些<link>
元素涉及外部资源(如图片、CSS 样式
等),此时浏览器会去获取这些外部资源。除此之外,我们还能看到<head>
元素中还包含着不少的<script>
元素,这些<script>
元素通过src
属性指向外部资源
- 我们看到
- 当浏览器解析到这里时(步骤 3),会暂停解析并下载 JavaScript 脚本
- 当 JavaScript 脚本下载完成后,浏览器的控制权转交给 JavaScript 引擎。当脚本执行完成后,控制权会交回给渲染引擎,渲染引擎继续往下解析
HTML
页面 - 此时
<body>
元素内容开始被解析,浏览器开始渲染页面
在这个过程中,我们看到
<head>
中放置的<script>
元素会阻塞页面的渲染过程:把 JavaScript 放在<head>
里,意味着必须把所有 JavaScript 代码都下载、解析和解释完成后,才能开始渲染页面
。 如果外部脚本加载时间很长(比如一直无法完成下载),就会造成网页长时间失去响应,浏览器就会呈现“假死”状态,用户体验会变得很糟糕 因此,对于对性能要求较高、需要快速将内容呈现给用户的网页,常常会将 JavaScript 脚本放在<body>
的最后面。这样可以避免资源阻塞,页面得以迅速展示
。我们还可以使用defer/async/preload
等属性来标记<script>
标签,来控制 JavaScript 的加载顺序
延迟加载的方式有哪些
js 的加载、解析和执行会阻塞页面的渲染过程,因此我们希望 js 脚本能够尽可能的延迟加载,提高页面的渲染速度。
几种方式是:
- 将 js 脚本放在文档的底部,来使 js 脚本尽可能的在最后来加载执行
- 给 js 脚本添加
defer
属性,这个属性会让脚本的加载与文档的解析同步解析,然后在文档解析完成后再执行这个脚本文件,这样的话就能使页面的渲染不被阻塞。多个设置了defer
属性的脚本按规范来说最后是顺序执行的,但是在一些浏览器中可能不是这样 - 给 js 脚本添加
async
属性,这个属性会使脚本异步加载,不会阻塞页面的解析过程,但是当脚本加载完成后立即执行 js脚本,这个时候如果文档没有解析完成的话同样会阻塞。多个async
属性的脚本的执行顺序是不可预测的,一般不会按照代码的顺序依次执行 - 动态创建
DOM
标签的方式,我们可以对文档的加载事件进行监听,当文档加载完成后再动态的创建script
标签来引入 js 脚本
怎么判断页面是否加载完成
Load
事件触发代表页面中的DOM
,CSS
,JS
,图片已经全部加载完毕。DOMContentLoaded
事件触发代表初始的HTML
被完全加载和解析,不需要等待CSS
,JS
,图片加载
对requestAnimationframe的理解
实现动画效果的方法比较多,Javascript 中可以通过定时器 setTimeout 来实现,CSS3 中可以使用 transition 和 animation 来实现,HTML5 中的 canvas 也可以实现。除此之外,HTML5 提供一个专门用于请求动画的API,那就是 requestAnimationFrame,顾名思义就是请求动画帧。
MDN对该方法的描述:
window.requestAnimationFrame() 告诉浏览器——你希望执行一个动画,并且要求浏览器在下次重绘之前调用指定的回调函数更新动画。该方法需要传入一个回调函数作为参数,该回调函数会在浏览器下一次重绘之前执行。
语法: window.requestAnimationFrame(callback);
其中,callback是下一次重绘之前更新动画帧所调用的函数(即上面所说的回调函数)。该回调函数会被传入DOMHighResTimeStamp参数,它表示requestAnimationFrame() 开始去执行回调函数的时刻。该方法属于宏任务,所以会在执行完微任务之后再去执行。
取消动画: 使用cancelAnimationFrame()来取消执行动画,该方法接收一个参数——requestAnimationFrame默认返回的id,只需要传入这个id就可以取消动画了。
优势:
- CPU节能:使用SetTinterval 实现的动画,当页面被隐藏或最小化时,SetTinterval 仍然在后台执行动画任务,由于此时页面处于不可见或不可用状态,刷新动画是没有意义的,完全是浪费CPU资源。而RequestAnimationFrame则完全不同,当页面处理未激活的状态下,该页面的屏幕刷新任务也会被系统暂停,因此跟着系统走的RequestAnimationFrame也会停止渲染,当页面被激活时,动画就从上次停留的地方继续执行,有效节省了CPU开销。
- 函数节流:在高频率事件( resize, scroll 等)中,为了防止在一个刷新间隔内发生多次函数执行,RequestAnimationFrame可保证每个刷新间隔内,函数只被执行一次,这样既能保证流畅性,也能更好的节省函数执行的开销,一个刷新间隔内函数执行多次时没有意义的,因为多数显示器每16.7ms刷新一次,多次绘制并不会在屏幕上体现出来。
- 减少DOM操作:requestAnimationFrame 会把每一帧中的所有DOM操作集中起来,在一次重绘或回流中就完成,并且重绘或回流的时间间隔紧紧跟随浏览器的刷新频率,一般来说,这个频率为每秒60帧。
setTimeout执行动画的缺点:它通过设定间隔时间来不断改变图像位置,达到动画效果。但是容易出现卡顿、抖动的现象;原因是:
- settimeout任务被放入异步队列,只有当主线程任务执行完后才会执行队列中的任务,因此实际执行时间总是比设定时间要晚;
- settimeout的固定时间间隔不一定与屏幕刷新间隔时间相同,会引起丢帧。
对Promise的理解
Promise是异步编程的一种解决方案,它是一个对象,可以获取异步操作的消息,他的出现大大改善了异步编程的困境,避免了地狱回调,它比传统的解决方案回调函数和事件更合理和更强大。
所谓Promise,简单说就是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果。从语法上说,Promise 是一个对象,从它可以获取异步操作的消息。Promise 提供统一的 API,各种异步操作都可以用同样的方法进行处理。
(1)Promise的实例有三个状态:
- Pending(进行中)
- Resolved(已完成)
- Rejected(已拒绝)
当把一件事情交给promise时,它的状态就是Pending,任务完成了状态就变成了Resolved、没有完成失败了就变成了Rejected。
(2)Promise的实例有两个过程:
- pending -> fulfilled : Resolved(已完成)
- pending -> rejected:Rejected(已拒绝)
注意:一旦从进行状态变成为其他状态就永远不能更改状态了。
Promise的特点:
- 对象的状态不受外界影响。promise对象代表一个异步操作,有三种状态,
pending
(进行中)、fulfilled
(已成功)、rejected
(已失败)。只有异步操作的结果,可以决定当前是哪一种状态,任何其他操作都无法改变这个状态,这也是promise这个名字的由来——“承诺”; - 一旦状态改变就不会再变,任何时候都可以得到这个结果。promise对象的状态改变,只有两种可能:从
pending
变为fulfilled
,从pending
变为rejected
。这时就称为resolved
(已定型)。如果改变已经发生了,你再对promise对象添加回调函数,也会立即得到这个结果。这与事件(event)完全不同,事件的特点是:如果你错过了它,再去监听是得不到结果的。
Promise的缺点:
- 无法取消Promise,一旦新建它就会立即执行,无法中途取消。
- 如果不设置回调函数,Promise内部抛出的错误,不会反应到外部。
- 当处于pending状态时,无法得知目前进展到哪一个阶段(刚刚开始还是即将完成)。
总结: Promise 对象是异步编程的一种解决方案,最早由社区提出。Promise 是一个构造函数,接收一个函数作为参数,返回一个 Promise 实例。一个 Promise 实例有三种状态,分别是pending、resolved 和 rejected,分别代表了进行中、已成功和已失败。实例的状态只能由 pending 转变 resolved 或者rejected 状态,并且状态一经改变,就凝固了,无法再被改变了。
状态的改变是通过 resolve() 和 reject() 函数来实现的,可以在异步操作结束后调用这两个函数改变 Promise 实例的状态,它的原型上定义了一个 then 方法,使用这个 then 方法可以为两个状态的改变注册回调函数。这个回调函数属于微任务,会在本轮事件循环的末尾执行。
注意: 在构造 Promise
的时候,构造函数内部的代码是立即执行的
什么是闭包,闭包的作用是什么
代码语言:javascript复制当一个内部函数被调用,就会形成闭包,闭包就是能够读取其他函数内部变量的函数。
闭包作用:
局部变量无法共享和长久的保存,而全局变量可能造成变量污染,所以我们希望有一种机制既可以长久的保存变量又不会造成全局污染。
伪元素和伪类的区别和作用?
- 伪元素:在内容元素的前后插入额外的元素或样式,但是这些元素实际上并不在文档中生成。它们只在外部显示可见,但不会在文档的源代码中找到它们,因此,称为“伪”元素。例如:
p::before {content:"第一章:";}
p::after {content:"Hot!";}
p::first-line {background:red;}
p::first-letter {font-size:30px;}
- 伪类:将特殊的效果添加到特定选择器上。它是已有元素上添加类别的,不会产生新的元素。例如:
a:hover {color: #FF00FF}
p:first-child {color: red}
总结: 伪类是通过在元素选择器上加⼊伪类改变元素状态,⽽伪元素通过对元素的操作进⾏对元素的改变。
对媒体查询的理解?
媒体查询由⼀个可选的媒体类型和零个或多个使⽤媒体功能的限制了样式表范围的表达式组成,例如宽度、⾼度和颜⾊。媒体查询,添加⾃CSS3,允许内容的呈现针对⼀个特定范围的输出设备⽽进⾏裁剪,⽽不必改变内容本身,适合web⽹⻚应对不同型号的设备⽽做出对应的响应适配。
媒体查询包含⼀个可选的媒体类型和满⾜CSS3规范的条件下,包含零个或多个表达式,这些表达式描述了媒体特征,最终会被解析为true或false。如果媒体查询中指定的媒体类型匹配展示⽂档所使⽤的设备类型,并且所有的表达式的值都是true,那么该媒体查询的结果为true。那么媒体查询内的样式将会⽣效。
代码语言:javascript复制<!-- link元素中的CSS媒体查询 -->
<link rel="stylesheet" media="(max-width: 800px)" href="example.css" />
<!-- 样式表中的CSS媒体查询 -->
<style>
@media (max-width: 600px) { .facet_sidebar { display: none; } }
</style>
简单来说,使用 @media 查询,可以针对不同的媒体类型定义不同的样式。@media 可以针对不同的屏幕尺寸设置不同的样式,特别是需要设置设计响应式的页面,@media 是非常有用的。当重置浏览器大小的过程中,页面也会根据浏览器的宽度和高度重新渲染页面。
陈述http
代码语言:yaml复制基本概念:
HTTP,全称为 HyperText Transfer Protocol,即为超文本传输协议。是互联网应用最为广泛的一种网络协议
所有的 www 文件都必须遵守这个标准。
http特性:
HTTP 是无连接无状态的
HTTP 一般构建于 TCP/IP 协议之上,默认端口号是 80
HTTP 可以分为两个部分,即请求和响应。
http请求:
HTTP 定义了在与服务器交互的不同方式,最常用的方法有 4 种
分别是 GET,POST,PUT, DELETE。URL 全称为资源描述符,可以这么认为:一个 URL 地址
对应着一个网络上的资源,而 HTTP 中的 GET,POST,PUT,DELETE
就对应着对这个资源的查询,修改,增添,删除4个操作。
HTTP 请求由 3 个部分构成,分别是:状态行,请求头(Request Header),请求正文。
HTTP 响应由 3 个部分构成,分别是:状态行,响应头(Response Header),响应正文。
HTTP 响应中包含一个状态码,用来表示服务器对客户端响应的结果。
状态码一般由3位构成:
1xx : 表示请求已经接受了,继续处理。
2xx : 表示请求已经处理掉了。
3xx : 重定向。
4xx : 一般表示客户端有错误,请求无法实现。
5xx : 一般为服务器端的错误。
比如常见的状态码:
200 OK 客户端请求成功。
301 Moved Permanently 请求永久重定向。
302 Moved Temporarily 请求临时重定向。
304 Not Modified 文件未修改,可以直接使用缓存的文件。
400 Bad Request 由于客户端请求有语法错误,不能被服务器所理解。
401 Unauthorized 请求未经授权,无法访问。
403 Forbidden 服务器收到请求,但是拒绝提供服务。服务器通常会在响应正文中给出不提供服务的原因。
404 Not Found 请求的资源不存在,比如输入了错误的URL。
500 Internal Server Error 服务器发生不可预期的错误,导致无法完成客户端的请求。
503 Service Unavailable 服务器当前不能够处理客户端的请求,在一段时间之后,服务器可能会恢复正常。
大概还有一些关于http请求和响应头信息的介绍。
Service Worker
Service workers
本质上充当Web应用程序与浏览器之间的代理服务器,也可以在网络可用时作为浏览器和网络间的代理。它们旨在(除其他之外)使得能够创建有效的离线体验,拦截网络请求并基于网络是否可用以及更新的资源是否驻留在服务器上来采取适当的动作。他们还允许访问推送通知和后台同步API
浏览器对 ServiceWorker 做了很多限制
- 在
ServiceWorker
中无法直接访问DOM
,但可以通过postMessage
接口发送的消息来与其控制的页面进行通信 ServiceWorker
只能在本地环境下或HTTPS
网站中使用ServiceWorker
有作用域的限制,一个ServiceWorker
脚本只能作用于当前路径及其子路径;
目前该技术通常用来做缓存文件,提高首屏速度
代码语言:javascript复制// index.js
if (navigator.serviceWorker) {
navigator.serviceWorker
.register("sw.js")
.then(function(registration) {
console.log("service worker 注册成功");
})
.catch(function(err) {
console.log("servcie worker 注册失败");
});
}
// sw.js
// 监听 `install` 事件,回调中缓存所需文件
self.addEventListener("install", e => {
e.waitUntil(
caches.open("my-cache").then(function(cache) {
return cache.addAll(["./index.html", "./index.js"]);
})
);
});
// 拦截所有请求事件
// 如果缓存中已经有请求的数据就直接用缓存,否则去请求数据
self.addEventListener("fetch", e => {
e.respondWith(
caches.match(e.request).then(function(response) {
if (response) {
return response;
}
console.log("fetch source");
})
);
});
打开页面,可以在开发者工具中的
Application
看到Service Worker
已经启动了
在 Cache 中也可以发现我们所需的文件已被缓存
当我们重新刷新页面可以发现我们缓存的数据是从
Service
Worker
中读取的
说一下SPA单页面有什么优缺点?
代码语言:javascript复制优点:
1.体验好,不刷新,减少 请求 数据ajax异步获取 页面流程;
2.前后端分离
3.减轻服务端压力
4.共用一套后端程序代码,适配多端
缺点:
1.首屏加载过慢;
2.SEO 不利于搜索引擎抓取
HTTPS的特点
HTTPS的优点如下:
- 使用HTTPS协议可以认证用户和服务器,确保数据发送到正确的客户端和服务器;
- 使用HTTPS协议可以进行加密传输、身份认证,通信更加安全,防止数据在传输过程中被窃取、修改,确保数据安全性;
- HTTPS是现行架构下最安全的解决方案,虽然不是绝对的安全,但是大幅增加了中间人攻击的成本;
HTTPS的缺点如下:
- HTTPS需要做服务器和客户端双方的加密个解密处理,耗费更多服务器资源,过程复杂;
- HTTPS协议握手阶段比较费时,增加页面的加载时间;
- SSL证书是收费的,功能越强大的证书费用越高;
- HTTPS连接服务器端资源占用高很多,支持访客稍多的网站需要投入更大的成本;
- SSL证书需要绑定IP,不能再同一个IP上绑定多个域名。