基于情感词典的情感分析流程图_情感的解释

2022-09-23 11:29:08 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

思路以及代码都来源于下面两篇文章:

一个不知死活的胖子:Python做文本情感分析之情感极性分析

Ran Fengzheng 的博客:基于情感词典的文本情感极性分析相关代码

基于情感词典的情感分析应该是最简单的情感分析方法了,大致说一下使用情感词典进行情感分析的思路:

对文档分词,找出文档中的情感词、否定词以及程度副词,然后判断每个情感词之前是否有否定词及程度副词,将它之前的否定词和程度副词划分为一个组,如果有否定词将情感词的情感权值乘以-1,如果有程度副词就乘以程度副词的程度值,最后所有组的得分加起来,大于0的归于正向,小于0的归于负向。

准备:

1.BosonNLP情感词典

既然是基于情感词典的分析,当然需要一份包含所有情感词的词典,网上已有现成的,直接下载即可。

https://bosonnlp.com/dev/resource

从下载的文件里,随便粘了几个正向的情感词,词后面的数字表示的是情感词的情感分值,一般正向的都是正数,负向的是负数:

代码语言:javascript复制
丰富多彩 1.87317228434
神采飞扬 1.87321290817
细微 1.87336937803
178.00 1.87338705728
不辞辛劳 1.87338705728
保加利亚 1.87338705728

注:由于BosonNLP是基于微博、新闻、论坛等数据来源构建的情感词典,因此拿来对其他类别的文本进行分析效果可能不好

也有一种将所有情感词的情感分值设为1的方法来计算,想要详细了解可参考此文章:

文本情感分类(一):传统模型

2.否定词词典

文本情感分类(一):传统模型中提供了一个情感极性词典的下载包,包中带了一个否定词的txt。

代码语言:javascript复制
不大
不丁点儿
不甚
不怎么
聊
没怎么
不可以
怎么不
几乎不
从来不
从不
不用
不曾
不该
不必
不会
不好
不能
很少
极少
没有
不是
难以
放下
扼杀
终止
停止
放弃
反对
缺乏
缺少
不
甭
勿
别
未
反
没
否
木有
非
无
请勿
无须
并非
毫无
决不
休想
永不
不要
未尝
未曾
毋
莫
从未
从未有过
尚未
一无
并未
尚无
从没
绝非
远非
切莫
绝不
毫不
禁止
忌
拒绝
杜绝
弗

3.程度副词词典

程度副词如:非常、很、特别…等词

原博中提供了《知网》情感分析用词语集(beta版)的下载链接,该词典中包含了程度副词已经对应的程度值,但是下载下来之后发现只有程度副词,并没有对应的程度值。

从程度级别词语.txt中选取了一部分程度副词,可以看到只有程度词,没有程度值,这个时候就自己看情况赋一个值好了:

代码语言:javascript复制
中文程度级别词语		219

1. “极其|extreme / 最|most”	69
百分之百
倍加
备至
不得了
不堪
不可开交
不亦乐乎
不折不扣
彻头彻尾
充分
到头
地地道道
非常
极
极度
极端
极其
极为
截然
尽
惊人地

改完之后的格式如下,程度副词和程度值用逗号分割,程度值可以自己定义:

代码语言:javascript复制
百分之百,2
倍加,2
备至,2
不得了,2
不堪,2
不可开交,2
不亦乐乎,2
不折不扣,2
彻头彻尾,2
.....

4.停用词词典

数据堂的下载本地总是打不开,因此原博中提供的数据堂的中文停用词下载也是没下载下来,然后使用了snownlp源码中的停用词词典,但是后来发现有些情感词被当做停用词了

数据堂停用词下载:http://www.datatang.com/data/43894

snownlp源码:https://github.com/isnowfy/snownlp (停用词在snownlp/normal文件夹下 stopwords.txt)

5.分词工具

由于使用python,选择了jieba分词

数据和工具都准备好了,现在可以开始情感分析了~

来一个简单的句子:我今天很高兴也非常开心

(1)分词,去除停用词

我、今天、也被当作停用词去掉,剩下很、高兴、非常、开心

代码语言:javascript复制
def seg_word(sentence):
    """使用jieba对文档分词"""
    seg_list = jieba.cut(sentence)
    seg_result = []
    for w in seg_list:
        seg_result.append(w)
    # 读取停用词文件
    stopwords = set()
    fr = codecs.open('stopwords.txt', 'r', 'utf-8')
    for word in fr:
        stopwords.add(word.strip())
    fr.close()
    # 去除停用词
    return list(filter(lambda x: x not in stopwords, seg_result))

(2)将分词结果转为字典,key为单词,value为单词在分词结果中的索引,后来想到一个问题,如果把单词作为key的话假如一个情感词在文中出现了多次,那么应该是只记录了这个词最后一次出现的位置,其他的被覆盖掉了。

将上一步得到的分词结果转为字典:

{‘很’: 0, ‘高兴’: 1, ‘非常’: 2, ‘开心’: 3}

代码语言:javascript复制
def list_to_dict(word_list):
    """将分词后的列表转为字典,key为单词,value为单词在列表中的索引,索引相当于词语在文档中出现的位置"""
    data = {}
    for x in range(0, len(word_list)):
        data[word_list[x]] = x
    return data

(3)对分词结果分类,找出情感词、否定词和程度副词

情感词sen_word(高兴和开心,key为单词的索引,value为情感权值):

{1: ‘1.48950851679’, 3: ‘2.61234173173’}

程度副词degree_word(很和非常,key为索引,value为程度值) {0: ‘1.75’, 2: ‘2’}

否定词not_word,由于没有出现否定词,所以否定词为空: {}

代码语言:javascript复制
def classify_words(word_dict):
    """词语分类,找出情感词、否定词、程度副词"""
    # 读取情感字典文件
    sen_file = open('BosonNLP_sentiment_score.txt', 'r ', encoding='utf-8')
    # 获取字典文件内容
    sen_list = sen_file.readlines()
    # 创建情感字典
    sen_dict = defaultdict()
    # 读取字典文件每一行内容,将其转换为字典对象,key为情感词,value为对应的分值
    for s in sen_list:
        # 每一行内容根据空格分割,索引0是情感词,索引1是情感分值(情感词典文件中有一行是空行,因此执行的时候会报错,注意处理一下空行,这里没有处理)
        sen_dict[s.split(' ')[0]] = s.split(' ')[1]

    # 读取否定词文件
    not_word_file = open('notDic.txt', 'r ', encoding='utf-8')
    # 由于否定词只有词,没有分值,使用list即可
    not_word_list = not_word_file.readlines()

    # 读取程度副词文件
    degree_file = open('degree.txt', 'r ', encoding='utf-8')
    degree_list = degree_file.readlines()
    degree_dic = defaultdict()
    # 程度副词与情感词处理方式一样,转为程度副词字典对象,key为程度副词,value为对应的程度值
    for d in degree_list:
        degree_dic[d.split(',')[0]] = d.split(',')[1]

    # 分类结果,词语的index作为key,词语的分值作为value,否定词分值设为-1
    sen_word = dict()
    not_word = dict()
    degree_word = dict()

(4)计算得分

首先设置初始权重W为1,从第一个情感词开始,用权重W*该情感词的情感值作为得分(用score记录),然后判断与下一个情感词之间是否有程度副词及否定词,如果有否定词将W*-1,如果有程度副词,W*程度副词的程度值,此时的W作为遍历下一个情感词的权重值,循环直到遍历完所有的情感词,每次遍历过程中的得分score加起来的总和就是这篇文档的情感得分。

代码语言:javascript复制
def socre_sentiment(sen_word, not_word, degree_word, seg_result):
    """计算得分"""
    # 权重初始化为1
    W = 1
    score = 0
    # 情感词下标初始化
    sentiment_index = -1
    # 情感词的位置下标集合
    sentiment_index_list = list(sen_word.keys())
    # 遍历分词结果(遍历分词结果是为了定位两个情感词之间的程度副词和否定词)
    for i in range(0, len(seg_result)):
        # 如果是情感词(根据下标是否在情感词分类结果中判断)
        if i in sen_word.keys():
            # 权重*情感词得分
            score  = W * float(sen_word[i])
            # 情感词下标加1,获取下一个情感词的位置
            sentiment_index  = 1
            if sentiment_index < len(sentiment_index_list) - 1:
                # 判断当前的情感词与下一个情感词之间是否有程度副词或否定词
                for j in range(sentiment_index_list[sentiment_index], sentiment_index_list[sentiment_index   1]):
                    # 更新权重,如果有否定词,取反
                    if j in not_word.keys():
                        W *= -1
                    elif j in degree_word.keys():
                        # 更新权重,如果有程度副词,分值乘以程度副词的程度分值
                        W *= float(degree_word[j])
        # 定位到下一个情感词
        if sentiment_index < len(sentiment_index_list) - 1:
            i = sentiment_index_list[sentiment_index   1]
    return score

W=1

score=0

第一个情感词是高兴,高兴的情感权值为1.48950851679,score=W*情感权值=1*1.48950851679=1.48950851679

高兴和下一个情感词开心之间出现了程度副词非常,程度值为2,因此W=W*2=1*2=2,然后获取下一个情感词

下一个情感词是开心,此时W=2,score=score 2*2.61234173173=1.48950851679 2*2.61234173173=6.71419198025

遍历结束

这里也发现两个问题:

(1)第一个情感词之前出现的程度副词和否定词被忽略了

(2)在判断两个情感词之间出现否定词以及程度副词时,W没有被初始化为1,这样W就被累乘了

有兴趣的可以修改一下~

完整代码:

代码语言:javascript复制
from collections import defaultdict
import os
import re
import jieba
import codecs

def seg_word(sentence):
    """使用jieba对文档分词"""
    seg_list = jieba.cut(sentence)
    seg_result = []
    for w in seg_list:
        seg_result.append(w)
    # 读取停用词文件
    stopwords = set()
    fr = codecs.open('stopwords.txt', 'r', 'utf-8')
    for word in fr:
        stopwords.add(word.strip())
    fr.close()
    # 去除停用词
    return list(filter(lambda x: x not in stopwords, seg_result))


def classify_words(word_dict):
    """词语分类,找出情感词、否定词、程度副词"""
    # 读取情感字典文件
    sen_file = open('BosonNLP_sentiment_score.txt', 'r ', encoding='utf-8')
    # 获取字典文件内容
    sen_list = sen_file.readlines()
    # 创建情感字典
    sen_dict = defaultdict()
    # 读取字典文件每一行内容,将其转换为字典对象,key为情感词,value为对应的分值
    for s in sen_list:
        # 每一行内容根据空格分割,索引0是情感词,索引01是情感分值
        sen_dict[s.split(' ')[0]] = s.split(' ')[1]

    # 读取否定词文件
    not_word_file = open('notDic.txt', 'r ', encoding='utf-8')
    # 由于否定词只有词,没有分值,使用list即可
    not_word_list = not_word_file.readlines()

    # 读取程度副词文件
    degree_file = open('degree.txt', 'r ', encoding='utf-8')
    degree_list = degree_file.readlines()
    degree_dic = defaultdict()
    # 程度副词与情感词处理方式一样,转为程度副词字典对象,key为程度副词,value为对应的程度值
    for d in degree_list:
        degree_dic[d.split(',')[0]] = d.split(',')[1]

    # 分类结果,词语的index作为key,词语的分值作为value,否定词分值设为-1
    sen_word = dict()
    not_word = dict()
    degree_word = dict()

    # 分类
    for word in word_dict.keys():
        if word in sen_dict.keys() and word not in not_word_list and word not in degree_dic.keys():
            # 找出分词结果中在情感字典中的词
            sen_word[word_dict[word]] = sen_dict[word]
        elif word in not_word_list and word not in degree_dic.keys():
            # 分词结果中在否定词列表中的词
            not_word[word_dict[word]] = -1
        elif word in degree_dic.keys():
            # 分词结果中在程度副词中的词
            degree_word[word_dict[word]] = degree_dic[word]
    sen_file.close()
    degree_file.close()
    not_word_file.close()
    # 将分类结果返回
    return sen_word, not_word, degree_word


def list_to_dict(word_list):
    """将分词后的列表转为字典,key为单词,value为单词在列表中的索引,索引相当于词语在文档中出现的位置"""
    data = {}
    for x in range(0, len(word_list)):
        data[word_list[x]] = x
    return data


def get_init_weight(sen_word, not_word, degree_word):
    # 权重初始化为1
    W = 1
    # 将情感字典的key转为list
    sen_word_index_list = list(sen_word.keys())
    if len(sen_word_index_list) == 0:
        return W
    # 获取第一个情感词的下标,遍历从0到此位置之间的所有词,找出程度词和否定词
    for i in range(0, sen_word_index_list[0]):
        if i in not_word.keys():
            W *= -1
        elif i in degree_word.keys():
            # 更新权重,如果有程度副词,分值乘以程度副词的程度分值
            W *= float(degree_word[i])
    return W


def socre_sentiment(sen_word, not_word, degree_word, seg_result):
    """计算得分"""
    # 权重初始化为1
    W = 1
    score = 0
    # 情感词下标初始化
    sentiment_index = -1
    # 情感词的位置下标集合
    sentiment_index_list = list(sen_word.keys())
    # 遍历分词结果(遍历分词结果是为了定位两个情感词之间的程度副词和否定词)
    for i in range(0, len(seg_result)):
        # 如果是情感词(根据下标是否在情感词分类结果中判断)
        if i in sen_word.keys():
            # 权重*情感词得分
            score  = W * float(sen_word[i])
            # 情感词下标加1,获取下一个情感词的位置
            sentiment_index  = 1
            if sentiment_index < len(sentiment_index_list) - 1:
                # 判断当前的情感词与下一个情感词之间是否有程度副词或否定词
                for j in range(sentiment_index_list[sentiment_index], sentiment_index_list[sentiment_index   1]):
                    # 更新权重,如果有否定词,取反
                    if j in not_word.keys():
                        W *= -1
                    elif j in degree_word.keys():
                        # 更新权重,如果有程度副词,分值乘以程度副词的程度分值
                        W *= float(degree_word[j])
        # 定位到下一个情感词
        if sentiment_index < len(sentiment_index_list) - 1:
            i = sentiment_index_list[sentiment_index   1]
    return score

# 计算得分
def setiment_score(sententce):
    # 1.对文档分词
    seg_list = seg_word(sententce)
    # 2.将分词结果列表转为dic,然后找出情感词、否定词、程度副词
    sen_word, not_word, degree_word = classify_words(list_to_dict(seg_list))
    # 3.计算得分
    score = socre_sentiment(sen_word, not_word, degree_word, seg_list)
    return score

# 测试
print(setiment_score("我今天很高兴也非常开心"))

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/172407.html原文链接:https://javaforall.cn

0 人点赞