pycharm如何创建虚拟环境_pycharm安装后无解释器

2022-09-27 10:40:07 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

Installation

1) Environment

  • Python 3.x
  • Pytorch 1.1 or higher
  • CUDA 9.2 or higher
  • gcc-5.4 or higher

Create a conda virtual environment and activate it.

代码语言:javascript复制
conda create -n hais python=3.7
conda activate hais

2) Clone the repository.

代码语言:javascript复制
git clone https://github.com/hustvl/HAIS.git --recursive

3) Install the requirements.

代码语言:javascript复制
cd HAIS
pip install -r requirements.txt
conda install -c bioconda google-sparsehash 

4) Install spconv

  • Verify the version of spconv. spconv 1.0, compatible with CUDA < 11 and pytorch < 1.5, is already recursively cloned in HAIS/lib/spconv in step 2) by default. For higher version CUDA and pytorch, spconv 1.2 is suggested. Replace HAIS/lib/spconv with this fork of spconv.
代码语言:javascript复制
git clone https://github.com/outsidercsy/spconv.git --recursive
代码语言:javascript复制
  Note:  In the provided spconv 1.0 and 1.2, spconvspconvfunctional.py is modified to make grad_output contiguous. Make sure you use the modified spconv but not the original one. Or there would be some bugs of optimization.
  • Install the dependent libraries.
代码语言:javascript复制
conda install libboost
conda install -c daleydeng gcc-5 # (optional, install gcc-5.4 in conda env)
  • Compile the spconv library.
代码语言:javascript复制
cd HAIS/lib/spconv
python setup.py bdist_wheel
  • Intall the generated .whl file.
代码语言:javascript复制
cd HAIS/lib/spconv/dist
pip install {wheel_file_name}.whl

5) Compile the external C and CUDA ops.

代码语言:javascript复制
cd HAIS/lib/hais_ops
export CPLUS_INCLUDE_PATH={conda_env_path}/hais/include:$CPLUS_INCLUDE_PATH
python setup.py build_ext develop

{conda_env_path} is the location of the created conda environment, e.g., /anaconda3/envs.

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/175111.html原文链接:https://javaforall.cn

0 人点赞