文章目录
- 前言
- 一、Three.js的使用
- 1.3D模型的绘制
- 二、3D模型相关js文件
- 三、效果图
- 四、总结
前言
Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它创建各种三维场景,包括了摄影机、光影、材质等各种对象。
一个典型的 Three.js 程序至少要包括渲染器(Renderer)、场景(Scene)、照相机(Camera),以及你在场景中创建的物体。
Three.js相关文档:http://docs.thingjs.com/
一、Three.js的使用
安装第三方包:npm i --save threejs-miniprogram
1.3D模型的绘制
代码语言:javascript复制<view style="display:inline-block;">
<button size="mini" type="primary" class="btn" data-action="Walking" bindtap="play">走</button>
<button size="mini" type="primary" class="btn" data-action="WalkJump" bindtap="play">跳</button>
<button size="mini" type="primary" class="btn" data-action="Sitting" bindtap="play">坐</button>
<button size="mini" type="primary" class="btn" data-action="Standing" bindtap="play">站</button>
</view>
<canvas
type="webgl"
id="webgl"
style="width: 100%; height: 450px;"
bindtouchstart="touchStart"
bindtouchmove="touchMove"
bindtouchend="touchEnd"
></canvas>
代码语言:javascript复制import { createScopedThreejs } from 'threejs-miniprogram'
const { renderModel } = require('../../../lib/test-cases/model')
const app = getApp()
Page({
data: {},
onLoad: function () {
wx.createSelectorQuery()
.select('#webgl')
.node()
.exec((res) => {
const canvas = res[0].node
this.canvas = canvas
const THREE = createScopedThreejs(canvas)
this.fadeToAction = renderModel(canvas, THREE)//3d model
console.log(renderOrbit);
})
},
play(e){
let action = e.currentTarget.dataset.action
this.fadeToAction(action)
},
touchStart(e) {
this.canvas.dispatchTouchEvent({...e, type:'touchstart'})
},
touchMove(e) {
this.canvas.dispatchTouchEvent({...e, type:'touchmove'})
},
touchEnd(e) {
this.canvas.dispatchTouchEvent({...e, type:'touchend'})
}
})
二、3D模型相关js文件
代码语言:javascript复制import { registerGLTFLoader } from '../loaders/gltf-loader'
import registerOrbit from "./orbit"
export function renderModel(canvas, THREE) {
// glTF是一种开放格式的规范,用于更高效地传输、加载3D内容。
// 是为了使用GLTFLoader,与下面的registerOrbit类似
registerGLTFLoader(THREE)
var container, stats, clock, gui, mixer, actions, activeAction, previousAction;
var camera, scene, renderer, model, face, controls;
var api = { state: 'Walking' };
init();
animate();
function init() {
// 创建透视相机,这一透视相机,被用来模拟人眼所看到的景象,这是3D场景渲染中使用最普遍的投影模式。
camera = new THREE.PerspectiveCamera(45, canvas.width / canvas.height, 0.25, 100);
// 设置相机位置
camera.position.set(- 5, 3, 10);
// 相机看向哪个坐标
camera.lookAt(new THREE.Vector3(0, 2, 0));
// 创建场景
// 一个放置物体、灯光和摄像机的地方。
scene = new THREE.Scene();
scene.background = new THREE.Color(0xe0e0e0);
// 雾,线性雾,雾的密度是随着距离线性增大的
scene.fog = new THREE.Fog(0xe0e0e0, 20, 100);
// Three.js时钟对象
// 是为了计时用的,相当于代替requestAnimationFrame返回时间差
clock = new THREE.Clock();
// 创建光源
// 半球光
// 光源直接放置于场景之上,光照颜色从天空光线颜色,渐变到地面光线颜色。
// 不能投射阴影。
// skyColor : 0xffffff, groundColor : 0x444444,
var light = new THREE.HemisphereLight(0xffffff, 0x444444);
light.position.set(0, 20, 0);
scene.add(light);
// 平行光,常用平行光来模拟太阳光的效果
light = new THREE.DirectionalLight(0xffffff);
light.position.set(0, 20, 10);
scene.add(light);
/// 构造带网格的大地辅助
// 网格Mesh
// 平面几何体PlaneGeometry,PlaneBufferGeometry是PlaneGeometry中的BufferGeometry接口,使用 BufferGeometry 可以有效减少向 GPU 传输上述数据所需的开销。
// MeshPhongMaterial,一种用于具有镜面高光表面的材质。
var mesh = new THREE.Mesh(new THREE.PlaneBufferGeometry(2000, 2000), new THREE.MeshPhongMaterial({ color: 0x999999, depthWrite: false }));
mesh.rotation.x = - Math.PI / 2;
scene.add(mesh);
// 坐标格辅助对象,坐标格实际上是2维数组
var grid = new THREE.GridHelper(200, 40, 0x000000, 0x000000);
grid.material.opacity = 0.2;
grid.material.transparent = true;
scene.add(grid);
// 创建加载器,加载模型文件
var loader = new THREE.GLTFLoader();
// .GLB 文件
// 文件类似于GLTF文件,因为它们可能包含嵌入式资源,也可能引用外部资源。如果一个.GLB 文件带有单独的资源,它们很可能是以下文件:
// 二进制(.BIN )文件-包含动画、几何图形和其他数据的一个或多个BIN文件。
// 着色器(GLSL)文件-一个或多个包含着色器的GLSL文件。
// 图像(.JPG 、.PNG 等)文件-包含三维模型纹理的一个或多个文件。
loader.load('https://threejs.org/examples/models/gltf/RobotExpressive/RobotExpressive.glb', function (gltf) {
// gltf.animations; // Array
// gltf.scene; // THREE.Group
// gltf.scenes; // Array
// gltf.cameras; // Array
// gltf.asset; // Object
model = gltf.scene;//三维物体的组
scene.add(model);
//
createGUI(model, gltf.animations)
}, undefined, function (e) {
console.error(e);
});
// 创建渲染器,渲染场景
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(wx.getSystemInfoSync().pixelRatio);
renderer.setSize(canvas.width, canvas.height);
renderer.gammaOutput = true;
renderer.gammaFactor = 2.2;
// 创建控制器
// Orbit controls,轨道控制器,可以使得相机围绕目标进行轨道运动
// 表现就是可以使用鼠标或手指旋转物体
// 在外部需要事件配合传入
// registerOrbit是为了使用轨道控制器
const { OrbitControls } = registerOrbit(THREE)
controls = new OrbitControls( camera, renderer.domElement );
camera.position.set( 5, 5, 10 );
controls.update();
}
// 创建混合器
// 处理动作
function createGUI(model, animations) {
var states = ['Idle', 'Walking', 'Running', 'Dance', 'Death', 'Sitting', 'Standing'];
var emotes = ['Jump', 'Yes', 'No', 'Wave', 'Punch', 'ThumbsUp'];
// 创建帧动画混合器对象AnimationMixer,主要用于播放帧动画,可以播放所有子对象所绑定的帧动画,
// 执行混合器对象AnimationMixer的方法.clipAction(clip)把包含关键帧数据的剪辑对象AnimationClip作为参数,会返回一个帧动画操作对象AnimationAction,通过AnimationAction对象的方法.play()可以播放帧动画。
mixer = new THREE.AnimationMixer(model);
actions = {};
for (var i = 0; i < animations.length; i ) {
var clip = animations[i];
// 取出帧动画操作对象AnimationAction,以备播放用
var action = mixer.clipAction(clip);
actions[clip.name] = action;
//
if (emotes.indexOf(clip.name) >= 0 || states.indexOf(clip.name) >= 4) {
// 暂停在最后一帧播放的状态
action.clampWhenFinished = true;
// 不循环播放
action.loop = THREE.LoopOnce;
}
console.log('clip.name',clip.name);
}
// expressions
// 检索对象的子类对象,然后返回第一个匹配到name的
// 没有用到
face = model.getObjectByName('Head_2');
// 默认的动作
activeAction = actions['WalkJump'];
activeAction.play();
}
// 平滑切换动作
function fadeToAction(name, duration = 1) {
previousAction = activeAction;
activeAction = actions[name];
if (previousAction !== activeAction) {
previousAction.fadeOut(duration);
}
// 链式调用
// TimeScale是时间的比例因子. 值为0时会使动画暂停。值为负数时动画会反向执行。默认值是1。
// weight,动作的影响程度,取值范围[0, 1]。0 =无影响,1=完全影响,之间的值可以用来混合多个动作。默认值是1
activeAction
.reset()
.setEffectiveTimeScale(1)//设置时间比例(timeScale)以及停用所有的变形
.setEffectiveWeight(1)//设置权重weight,以及停止所有淡入淡出
.fadeIn(duration)//在传入的时间间隔内,逐渐将此动作的权重weight,由0升到1
.play();//让混合器激活动作
}
// 循环渲染场景
function animate() {
// 简单说.getDelta ()方法的功能就是获得前后两次执行该方法的时间间隔
// 返回间隔时间单位是秒
var dt = clock.getDelta();
if (mixer) mixer.update(dt);//更新混合器,是动画关键
canvas.requestAnimationFrame(animate);
controls.update()
renderer.render(scene, camera);
}
return fadeToAction
}
代码语言:javascript复制export function registerGLTFLoader(THREE) {
/**
* @author Rich Tibbett / https://github.com/richtr
* @author mrdoob / http://mrdoob.com/
* @author Tony Parisi / http://www.tonyparisi.com/
* @author Takahiro / https://github.com/takahirox
* @author Don McCurdy / https://www.donmccurdy.com
*/
THREE.GLTFLoader = (function () {
function GLTFLoader(manager) {
this.manager = (manager !== undefined) ? manager : THREE.DefaultLoadingManager;
this.dracoLoader = null;
this.ddsLoader = null;
}
GLTFLoader.prototype = {
constructor: GLTFLoader,
crossOrigin: 'anonymous',
load: function (url, onLoad, onProgress, onError) {
var scope = this;
var resourcePath;
if (this.resourcePath !== undefined) {
resourcePath = this.resourcePath;
} else if (this.path !== undefined) {
resourcePath = this.path;
} else {
resourcePath = THREE.LoaderUtils.extractUrlBase(url);
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
scope.manager.itemStart(url);
var _onError = function (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
scope.manager.itemEnd(url);
};
var loader = new THREE.FileLoader(scope.manager);
loader.setPath(this.path);
loader.setResponseType('arraybuffer');
if (scope.crossOrigin === 'use-credentials') {
loader.setWithCredentials(true);
}
loader.load(url, function (data) {
try {
scope.parse(data, resourcePath, function (gltf) {
onLoad(gltf);
scope.manager.itemEnd(url);
}, _onError);
} catch (e) {
_onError(e);
}
}, onProgress, _onError);
},
setCrossOrigin: function (value) {
this.crossOrigin = value;
return this;
},
setPath: function (value) {
this.path = value;
return this;
},
setResourcePath: function (value) {
this.resourcePath = value;
return this;
},
setDRACOLoader: function (dracoLoader) {
this.dracoLoader = dracoLoader;
return this;
},
setDDSLoader: function (ddsLoader) {
this.ddsLoader = ddsLoader;
return this;
},
parse: function (data, path, onLoad, onError) {
var content;
var extensions = {};
if (typeof data === 'string') {
content = data;
} else {
var magic = THREE.LoaderUtils.decodeText(new Uint8Array(data, 0, 4));
if (magic === BINARY_EXTENSION_HEADER_MAGIC) {
try {
extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data);
} catch (error) {
if (onError) onError(error);
return;
}
content = extensions[EXTENSIONS.KHR_BINARY_GLTF].content;
} else {
content = THREE.LoaderUtils.decodeText(new Uint8Array(data));
}
}
var json = JSON.parse(content);
if (json.asset === undefined || json.asset.version[0] < 2) {
if (onError) onError(new Error('THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.'));
return;
}
if (json.extensionsUsed) {
for (var i = 0; i < json.extensionsUsed.length; i) {
var extensionName = json.extensionsUsed[i];
var extensionsRequired = json.extensionsRequired || [];
switch (extensionName) {
case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
extensions[extensionName] = new GLTFLightsExtension(json);
break;
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[extensionName] = new GLTFMaterialsUnlitExtension();
break;
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
extensions[extensionName] = new GLTFMaterialsPbrSpecularGlossinessExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader);
break;
case EXTENSIONS.MSFT_TEXTURE_DDS:
extensions[EXTENSIONS.MSFT_TEXTURE_DDS] = new GLTFTextureDDSExtension(this.ddsLoader);
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] = new GLTFTextureTransformExtension();
break;
default:
if (extensionsRequired.indexOf(extensionName) >= 0) {
console.warn('THREE.GLTFLoader: Unknown extension "' extensionName '".');
}
}
}
}
var parser = new GLTFParser(json, extensions, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
manager: this.manager
});
parser.parse(onLoad, onError);
}
};
/* GLTFREGISTRY */
function GLTFRegistry() {
var objects = {};
return {
get: function (key) {
return objects[key];
},
add: function (key, object) {
objects[key] = object;
},
remove: function (key) {
delete objects[key];
},
removeAll: function () {
objects = {};
}
};
}
/*********************************/
/********** EXTENSIONS ***********/
/*********************************/
var EXTENSIONS = {
KHR_BINARY_GLTF: 'KHR_binary_glTF',
KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
};
/**
* DDS Texture Extension
*
* Specification:
* https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
*
*/
function GLTFTextureDDSExtension(ddsLoader) {
if (!ddsLoader) {
throw new Error('THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader');
}
this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
this.ddsLoader = ddsLoader;
}
/**
* Lights Extension
*
* Specification: PENDING
*/
function GLTFLightsExtension(json) {
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
var extension = (json.extensions && json.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL]) || {};
this.lightDefs = extension.lights || [];
}
GLTFLightsExtension.prototype.loadLight = function (lightIndex) {
var lightDef = this.lightDefs[lightIndex];
var lightNode;
var color = new THREE.Color(0xffffff);
if (lightDef.color !== undefined) color.fromArray(lightDef.color);
var range = lightDef.range !== undefined ? lightDef.range : 0;
switch (lightDef.type) {
case 'directional':
lightNode = new THREE.DirectionalLight(color);
lightNode.target.position.set(0, 0, - 1);
lightNode.add(lightNode.target);
break;
case 'point':
lightNode = new THREE.PointLight(color);
lightNode.distance = range;
break;
case 'spot':
lightNode = new THREE.SpotLight(color);
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set(0, 0, - 1);
lightNode.add(lightNode.target);
break;
default:
throw new Error('THREE.GLTFLoader: Unexpected light type, "' lightDef.type '".');
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set(0, 0, 0);
lightNode.decay = 2;
if (lightDef.intensity !== undefined) lightNode.intensity = lightDef.intensity;
lightNode.name = lightDef.name || ('light_' lightIndex);
return Promise.resolve(lightNode);
};
/**
* Unlit Materials Extension (pending)
*
* PR: https://github.com/KhronosGroup/glTF/pull/1163
*/
function GLTFMaterialsUnlitExtension() {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () {
return THREE.MeshBasicMaterial;
};
GLTFMaterialsUnlitExtension.prototype.extendParams = function (materialParams, materialDef, parser) {
var pending = [];
materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
materialParams.opacity = 1.0;
var metallicRoughness = materialDef.pbrMetallicRoughness;
if (metallicRoughness) {
if (Array.isArray(metallicRoughness.baseColorFactor)) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray(array);
materialParams.opacity = array[3];
}
if (metallicRoughness.baseColorTexture !== undefined) {
pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture));
}
}
return Promise.all(pending);
};
/* BINARY EXTENSION */
var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
var BINARY_EXTENSION_HEADER_LENGTH = 12;
var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };
function GLTFBinaryExtension(data) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
var headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH);
this.header = {
magic: THREE.LoaderUtils.decodeText(new Uint8Array(data.slice(0, 4))),
version: headerView.getUint32(4, true),
length: headerView.getUint32(8, true)
};
if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) {
throw new Error('THREE.GLTFLoader: Unsupported glTF-Binary header.');
} else if (this.header.version < 2.0) {
throw new Error('THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.');
}
var chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH);
var chunkIndex = 0;
while (chunkIndex < chunkView.byteLength) {
var chunkLength = chunkView.getUint32(chunkIndex, true);
chunkIndex = 4;
var chunkType = chunkView.getUint32(chunkIndex, true);
chunkIndex = 4;
if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) {
var contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH chunkIndex, chunkLength);
this.content = THREE.LoaderUtils.decodeText(contentArray);
} else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) {
var byteOffset = BINARY_EXTENSION_HEADER_LENGTH chunkIndex;
this.body = data.slice(byteOffset, byteOffset chunkLength);
}
// Clients must ignore chunks with unknown types.
chunkIndex = chunkLength;
}
if (this.content === null) {
throw new Error('THREE.GLTFLoader: JSON content not found.');
}
}
/**
* DRACO Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/pull/874
*/
function GLTFDracoMeshCompressionExtension(json, dracoLoader) {
if (!dracoLoader) {
throw new Error('THREE.GLTFLoader: No DRACOLoader instance provided.');
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
}
GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function (primitive, parser) {
var json = this.json;
var dracoLoader = this.dracoLoader;
var bufferViewIndex = primitive.extensions[this.name].bufferView;
var gltfAttributeMap = primitive.extensions[this.name].attributes;
var threeAttributeMap = {};
var attributeNormalizedMap = {};
var attributeTypeMap = {};
for (var attributeName in gltfAttributeMap) {
var threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase();
threeAttributeMap[threeAttributeName] = gltfAttributeMap[attributeName];
}
for (attributeName in primitive.attributes) {
var threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase();
if (gltfAttributeMap[attributeName] !== undefined) {
var accessorDef = json.accessors[primitive.attributes[attributeName]];
var componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
attributeTypeMap[threeAttributeName] = componentType;
attributeNormalizedMap[threeAttributeName] = accessorDef.normalized === true;
}
}
return parser.getDependency('bufferView', bufferViewIndex).then(function (bufferView) {
return new Promise(function (resolve) {
dracoLoader.decodeDracoFile(bufferView, function (geometry) {
for (var attributeName in geometry.attributes) {
var attribute = geometry.attributes[attributeName];
var normalized = attributeNormalizedMap[attributeName];
if (normalized !== undefined) attribute.normalized = normalized;
}
resolve(geometry);
}, threeAttributeMap, attributeTypeMap);
});
});
};
/**
* Texture Transform Extension
*
* Specification:
*/
function GLTFTextureTransformExtension() {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
GLTFTextureTransformExtension.prototype.extendTexture = function (texture, transform) {
texture = texture.clone();
if (transform.offset !== undefined) {
texture.offset.fromArray(transform.offset);
}
if (transform.rotation !== undefined) {
texture.rotation = transform.rotation;
}
if (transform.scale !== undefined) {
texture.repeat.fromArray(transform.scale);
}
if (transform.texCoord !== undefined) {
console.warn('THREE.GLTFLoader: Custom UV sets in "' this.name '" extension not yet supported.');
}
texture.needsUpdate = true;
return texture;
};
/**
* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
*/
function GLTFMaterialsPbrSpecularGlossinessExtension() {
return {
name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,
specularGlossinessParams: [
'color',
'map',
'lightMap',
'lightMapIntensity',
'aoMap',
'aoMapIntensity',
'emissive',
'emissiveIntensity',
'emissiveMap',
'bumpMap',
'bumpScale',
'normalMap',
'displacementMap',
'displacementScale',
'displacementBias',
'specularMap',
'specular',
'glossinessMap',
'glossiness',
'alphaMap',
'envMap',
'envMapIntensity',
'refractionRatio',
],
getMaterialType: function () {
return THREE.ShaderMaterial;
},
extendParams: function (materialParams, materialDef, parser) {
var pbrSpecularGlossiness = materialDef.extensions[this.name];
var shader = THREE.ShaderLib['standard'];
var uniforms = THREE.UniformsUtils.clone(shader.uniforms);
var specularMapParsFragmentChunk = [
'#ifdef USE_SPECULARMAP',
' uniform sampler2D specularMap;',
'#endif'
].join('n');
var glossinessMapParsFragmentChunk = [
'#ifdef USE_GLOSSINESSMAP',
' uniform sampler2D glossinessMap;',
'#endif'
].join('n');
var specularMapFragmentChunk = [
'vec3 specularFactor = specular;',
'#ifdef USE_SPECULARMAP',
' vec4 texelSpecular = texture2D( specularMap, vUv );',
' texelSpecular = sRGBToLinear( texelSpecular );',
' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
' specularFactor *= texelSpecular.rgb;',
'#endif'
].join('n');
var glossinessMapFragmentChunk = [
'float glossinessFactor = glossiness;',
'#ifdef USE_GLOSSINESSMAP',
' vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
' glossinessFactor *= texelGlossiness.a;',
'#endif'
].join('n');
var lightPhysicalFragmentChunk = [
'PhysicalMaterial material;',
'material.diffuseColor = diffuseColor.rgb;',
'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );',
'material.specularColor = specularFactor.rgb;',
].join('n');
var fragmentShader = shader.fragmentShader
.replace('uniform float roughness;', 'uniform vec3 specular;')
.replace('uniform float metalness;', 'uniform float glossiness;')
.replace('#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk)
.replace('#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk)
.replace('#include <roughnessmap_fragment>', specularMapFragmentChunk)
.replace('#include <metalnessmap_fragment>', glossinessMapFragmentChunk)
.replace('#include <lights_physical_fragment>', lightPhysicalFragmentChunk);
delete uniforms.roughness;
delete uniforms.metalness;
delete uniforms.roughnessMap;
delete uniforms.metalnessMap;
uniforms.specular = { value: new THREE.Color().setHex(0x111111) };
uniforms.glossiness = { value: 0.5 };
uniforms.specularMap = { value: null };
uniforms.glossinessMap = { value: null };
materialParams.vertexShader = shader.vertexShader;
materialParams.fragmentShader = fragmentShader;
materialParams.uniforms = uniforms;
materialParams.defines = { 'STANDARD': '' }
materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
materialParams.opacity = 1.0;
var pending = [];
if (Array.isArray(pbrSpecularGlossiness.diffuseFactor)) {
var array = pbrSpecularGlossiness.diffuseFactor;
materialParams.color.fromArray(array);
materialParams.opacity = array[3];
}
if (pbrSpecularGlossiness.diffuseTexture !== undefined) {
pending.push(parser.assignTexture(materialParams, 'map', pbrSpecularGlossiness.diffuseTexture));
}
materialParams.emissive = new THREE.Color(0.0, 0.0, 0.0);
materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
materialParams.specular = new THREE.Color(1.0, 1.0, 1.0);
if (Array.isArray(pbrSpecularGlossiness.specularFactor)) {
materialParams.specular.fromArray(pbrSpecularGlossiness.specularFactor);
}
if (pbrSpecularGlossiness.specularGlossinessTexture !== undefined) {
var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
pending.push(parser.assignTexture(materialParams, 'glossinessMap', specGlossMapDef));
pending.push(parser.assignTexture(materialParams, 'specularMap', specGlossMapDef));
}
return Promise.all(pending);
},
createMaterial: function (params) {
// setup material properties based on MeshStandardMaterial for Specular-Glossiness
var material = new THREE.ShaderMaterial({
defines: params.defines,
vertexShader: params.vertexShader,
fragmentShader: params.fragmentShader,
uniforms: params.uniforms,
fog: true,
lights: true,
opacity: params.opacity,
transparent: params.transparent
});
material.isGLTFSpecularGlossinessMaterial = true;
material.color = params.color;
material.map = params.map === undefined ? null : params.map;
material.lightMap = null;
material.lightMapIntensity = 1.0;
material.aoMap = params.aoMap === undefined ? null : params.aoMap;
material.aoMapIntensity = 1.0;
material.emissive = params.emissive;
material.emissiveIntensity = 1.0;
material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap;
material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap;
material.bumpScale = 1;
material.normalMap = params.normalMap === undefined ? null : params.normalMap;
if (params.normalScale) material.normalScale = params.normalScale;
material.displacementMap = null;
material.displacementScale = 1;
material.displacementBias = 0;
material.specularMap = params.specularMap === undefined ? null : params.specularMap;
material.specular = params.specular;
material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap;
material.glossiness = params.glossiness;
material.alphaMap = null;
material.envMap = params.envMap === undefined ? null : params.envMap;
material.envMapIntensity = 1.0;
material.refractionRatio = 0.98;
material.extensions.derivatives = true;
return material;
},
/**
* Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can
* copy only properties it knows about or inherits, and misses many properties that would
* normally be defined by MeshStandardMaterial.
*
* This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of
* loading a glTF model, but cloning later (e.g. by the user) would require these changes
* AND also updating `.onBeforeRender` on the parent mesh.
*
* @param {THREE.ShaderMaterial} source
* @return {THREE.ShaderMaterial}
*/
cloneMaterial: function (source) {
var target = source.clone();
target.isGLTFSpecularGlossinessMaterial = true;
var params = this.specularGlossinessParams;
for (var i = 0, il = params.length; i < il; i ) {
var value = source[params[i]];
target[params[i]] = (value && value.isColor) ? value.clone() : value;
}
return target;
},
// Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer.
refreshUniforms: function (renderer, scene, camera, geometry, material) {
if (material.isGLTFSpecularGlossinessMaterial !== true) {
return;
}
var uniforms = material.uniforms;
var defines = material.defines;
uniforms.opacity.value = material.opacity;
uniforms.diffuse.value.copy(material.color);
uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
uniforms.map.value = material.map;
uniforms.specularMap.value = material.specularMap;
uniforms.alphaMap.value = material.alphaMap;
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
var uvScaleMap;
if (material.map) {
uvScaleMap = material.map;
} else if (material.specularMap) {
uvScaleMap = material.specularMap;
} else if (material.displacementMap) {
uvScaleMap = material.displacementMap;
} else if (material.normalMap) {
uvScaleMap = material.normalMap;
} else if (material.bumpMap) {
uvScaleMap = material.bumpMap;
} else if (material.glossinessMap) {
uvScaleMap = material.glossinessMap;
} else if (material.alphaMap) {
uvScaleMap = material.alphaMap;
} else if (material.emissiveMap) {
uvScaleMap = material.emissiveMap;
}
if (uvScaleMap !== undefined) {
// backwards compatibility
if (uvScaleMap.isWebGLRenderTarget) {
uvScaleMap = uvScaleMap.texture;
}
if (uvScaleMap.matrixAutoUpdate === true) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
}
if (material.envMap) {
uniforms.envMap.value = material.envMap;
uniforms.envMapIntensity.value = material.envMapIntensity;
// don't flip CubeTexture envMaps, flip everything else:
// WebGLRenderTargetCube will be flipped for backwards compatibility
// WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
// this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
uniforms.flipEnvMap.value = material.envMap.isCubeTexture ? - 1 : 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.refractionRatio.value = material.refractionRatio;
uniforms.maxMipLevel.value = renderer.properties.get(material.envMap).__maxMipLevel;
}
uniforms.specular.value.copy(material.specular);
uniforms.glossiness.value = material.glossiness;
uniforms.glossinessMap.value = material.glossinessMap;
uniforms.emissiveMap.value = material.emissiveMap;
uniforms.bumpMap.value = material.bumpMap;
uniforms.normalMap.value = material.normalMap;
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
if (uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined) {
defines.USE_GLOSSINESSMAP = '';
// set USE_ROUGHNESSMAP to enable vUv
defines.USE_ROUGHNESSMAP = '';
}
if (uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined) {
delete defines.USE_GLOSSINESSMAP;
delete defines.USE_ROUGHNESSMAP;
}
}
};
}
/*********************************/
/********** INTERPOLATION ********/
/*********************************/
// Spline Interpolation
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
function GLTFCubicSplineInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {
THREE.Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer);
}
GLTFCubicSplineInterpolant.prototype = Object.create(THREE.Interpolant.prototype);
GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;
GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function (index) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
var result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 valueSize;
for (var i = 0; i !== valueSize; i ) {
result[i] = values[offset i];
}
return result;
};
GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.interpolate_ = function (i1, t0, t, t1) {
var result = this.resultBuffer;
var values = this.sampleValues;
var stride = this.valueSize;
var stride2 = stride * 2;
var stride3 = stride * 3;
var td = t1 - t0;
var p = (t - t0) / td;
var pp = p * p;
var ppp = pp * p;
var offset1 = i1 * stride3;
var offset0 = offset1 - stride3;
var s2 = - 2 * ppp 3 * pp;
var s3 = ppp - pp;
var s0 = 1 - s2;
var s1 = s3 - pp p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for (var i = 0; i !== stride; i ) {
var p0 = values[offset0 i stride]; // splineVertex_k
var m0 = values[offset0 i stride2] * td; // outTangent_k * (t_k 1 - t_k)
var p1 = values[offset1 i stride]; // splineVertex_k 1
var m1 = values[offset1 i] * td; // inTangent_k 1 * (t_k 1 - t_k)
result[i] = s0 * p0 s1 * m0 s2 * p1 s3 * m1;
}
return result;
};
/*********************************/
/********** INTERNALS ************/
/*********************************/
/* CONSTANTS */
var WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
var WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
var WEBGL_FILTERS = {
9728: THREE.NearestFilter,
9729: THREE.LinearFilter,
9984: THREE.NearestMipmapNearestFilter,
9985: THREE.LinearMipmapNearestFilter,
9986: THREE.NearestMipmapLinearFilter,
9987: THREE.LinearMipmapLinearFilter
};
var WEBGL_WRAPPINGS = {
33071: THREE.ClampToEdgeWrapping,
33648: THREE.MirroredRepeatWrapping,
10497: THREE.RepeatWrapping
};
var WEBGL_TYPE_SIZES = {
'SCALAR': 1,
'VEC2': 2,
'VEC3': 3,
'VEC4': 4,
'MAT2': 4,
'MAT3': 9,
'MAT4': 16
};
var ATTRIBUTES = {
POSITION: 'position',
NORMAL: 'normal',
TANGENT: 'tangent',
TEXCOORD_0: 'uv',
TEXCOORD_1: 'uv2',
COLOR_0: 'color',
WEIGHTS_0: 'skinWeight',
JOINTS_0: 'skinIndex',
};
var PATH_PROPERTIES = {
scale: 'scale',
translation: 'position',
rotation: 'quaternion',
weights: 'morphTargetInfluences'
};
var INTERPOLATION = {
CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
// keyframe track will be initialized with a default interpolation type, then modified.
LINEAR: THREE.InterpolateLinear,
STEP: THREE.InterpolateDiscrete
};
var ALPHA_MODES = {
OPAQUE: 'OPAQUE',
MASK: 'MASK',
BLEND: 'BLEND'
};
var MIME_TYPE_FORMATS = {
'image/png': THREE.RGBAFormat,
'image/jpeg': THREE.RGBFormat
};
/* UTILITY FUNCTIONS */
function resolveURL(url, path) {
// Invalid URL
if (typeof url !== 'string' || url === '') return '';
// Host Relative URL
if (/^https?:///i.test(path) && /^//.test(url)) {
path = path.replace(/(^https?://[^/] ).*/i, '$1');
}
// Absolute URL http://,https://,//
if (/^(https?:)?///i.test(url)) return url;
// Data URI
if (/^data:.*,.*$/i.test(url)) return url;
// Blob URL
if (/^blob:.*$/i.test(url)) return url;
// Relative URL
return path url;
}
var defaultMaterial;
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/
function createDefaultMaterial() {
defaultMaterial = defaultMaterial || new THREE.MeshStandardMaterial({
color: 0xFFFFFF,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: THREE.FrontSide
});
return defaultMaterial;
}
function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) {
// Add unknown glTF extensions to an object's userData.
for (var name in objectDef.extensions) {
if (knownExtensions[name] === undefined) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[name] = objectDef.extensions[name];
}
}
}
/**
* @param {THREE.Object3D|THREE.Material|THREE.BufferGeometry} object
* @param {GLTF.definition} gltfDef
*/
function assignExtrasToUserData(object, gltfDef) {
if (gltfDef.extras !== undefined) {
if (typeof gltfDef.extras === 'object') {
Object.assign(object.userData, gltfDef.extras);
} else {
console.warn('THREE.GLTFLoader: Ignoring primitive type .extras, ' gltfDef.extras);
}
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {THREE.BufferGeometry} geometry
* @param {Array} targets
* @param {GLTFParser} parser
* @return {Promise}
*/
function addMorphTargets(geometry, targets, parser) {
var hasMorphPosition = false;
var hasMorphNormal = false;
for (var i = 0, il = targets.length; i < il; i ) {
var target = targets[i];
if (target.POSITION !== undefined) hasMorphPosition = true;
if (target.NORMAL !== undefined) hasMorphNormal = true;
if (hasMorphPosition && hasMorphNormal) break;
}
if (!hasMorphPosition && !hasMorphNormal) return Promise.resolve(geometry);
var pendingPositionAccessors = [];
var pendingNormalAccessors = [];
for (var i = 0, il = targets.length; i < il; i ) {
var target = targets[i];
if (hasMorphPosition) {
var pendingAccessor = target.POSITION !== undefined
? parser.getDependency('accessor', target.POSITION)
: geometry.attributes.position;
pendingPositionAccessors.push(pendingAccessor);
}
if (hasMorphNormal) {
var pendingAccessor = target.NORMAL !== undefined
? parser.getDependency('accessor', target.NORMAL)
: geometry.attributes.normal;
pendingNormalAccessors.push(pendingAccessor);
}
}
return Promise.all([
Promise.all(pendingPositionAccessors),
Promise.all(pendingNormalAccessors)
]).then(function (accessors) {
var morphPositions = accessors[0];
var morphNormals = accessors[1];
// Clone morph target accessors before modifying them.
for (var i = 0, il = morphPositions.length; i < il; i ) {
if (geometry.attributes.position === morphPositions[i]) continue;
morphPositions[i] = cloneBufferAttribute(morphPositions[i]);
}
for (var i = 0, il = morphNormals.length; i < il; i ) {
if (geometry.attributes.normal === morphNormals[i]) continue;
morphNormals[i] = cloneBufferAttribute(morphNormals[i]);
}
for (var i = 0, il = targets.length; i < il; i ) {
var target = targets[i];
var attributeName = 'morphTarget' i;
if (hasMorphPosition) {
// Three.js morph position is absolute value. The formula is
// basePosition
// weight0 * ( morphPosition0 - basePosition )
// weight1 * ( morphPosition1 - basePosition )
// ...
// while the glTF one is relative
// basePosition
// weight0 * glTFmorphPosition0
// weight1 * glTFmorphPosition1
// ...
// then we need to convert from relative to absolute here.
if (target.POSITION !== undefined) {
var positionAttribute = morphPositions[i];
positionAttribute.name = attributeName;
var position = geometry.attributes.position;
for (var j = 0, jl = positionAttribute.count; j < jl; j ) {
positionAttribute.setXYZ(
j,
positionAttribute.getX(j) position.getX(j),
positionAttribute.getY(j) position.getY(j),
positionAttribute.getZ(j) position.getZ(j)
);
}
}
}
if (hasMorphNormal) {
// see target.POSITION's comment
if (target.NORMAL !== undefined) {
var normalAttribute = morphNormals[i];
normalAttribute.name = attributeName;
var normal = geometry.attributes.normal;
for (var j = 0, jl = normalAttribute.count; j < jl; j ) {
normalAttribute.setXYZ(
j,
normalAttribute.getX(j) normal.getX(j),
normalAttribute.getY(j) normal.getY(j),
normalAttribute.getZ(j) normal.getZ(j)
);
}
}
}
}
if (hasMorphPosition) geometry.morphAttributes.position = morphPositions;
if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals;
return geometry;
});
}
/**
* @param {THREE.Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/
function updateMorphTargets(mesh, meshDef) {
mesh.updateMorphTargets();
if (meshDef.weights !== undefined) {
for (var i = 0, il = meshDef.weights.length; i < il; i ) {
mesh.morphTargetInfluences[i] = meshDef.weights[i];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) {
var targetNames = meshDef.extras.targetNames;
if (mesh.morphTargetInfluences.length === targetNames.length) {
mesh.morphTargetDictionary = {};
for (var i = 0, il = targetNames.length; i < il; i ) {
mesh.morphTargetDictionary[targetNames[i]] = i;
}
} else {
console.warn('THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.');
}
}
}
function createPrimitiveKey(primitiveDef) {
var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION];
var geometryKey;
if (dracoExtension) {
geometryKey = 'draco:' dracoExtension.bufferView
':' dracoExtension.indices
':' createAttributesKey(dracoExtension.attributes);
} else {
geometryKey = primitiveDef.indices ':' createAttributesKey(primitiveDef.attributes) ':' primitiveDef.mode;
}
return geometryKey;
}
function createAttributesKey(attributes) {
var attributesKey = '';
var keys = Object.keys(attributes).sort();
for (var i = 0, il = keys.length; i < il; i ) {
attributesKey = keys[i] ':' attributes[keys[i]] ';';
}
return attributesKey;
}
function cloneBufferAttribute(attribute) {
if (attribute.isInterleavedBufferAttribute) {
var count = attribute.count;
var itemSize = attribute.itemSize;
var array = attribute.array.slice(0, count * itemSize);
for (var i = 0, j = 0; i < count; i) {
array[j ] = attribute.getX(i);
if (itemSize >= 2) array[j ] = attribute.getY(i);
if (itemSize >= 3) array[j ] = attribute.getZ(i);
if (itemSize >= 4) array[j ] = attribute.getW(i);
}
return new THREE.BufferAttribute(array, itemSize, attribute.normalized);
}
return attribute.clone();
}
/* GLTF PARSER */
function GLTFParser(json, extensions, options) {
this.json = json || {};
this.extensions = extensions || {};
this.options = options || {};
// loader object cache
this.cache = new GLTFRegistry();
// BufferGeometry caching
this.primitiveCache = {};
this.textureLoader = new THREE.TextureLoader(this.options.manager);
this.textureLoader.setCrossOrigin(this.options.crossOrigin);
this.fileLoader = new THREE.FileLoader(this.options.manager);
this.fileLoader.setResponseType('arraybuffer');
if (this.options.crossOrigin === 'use-credentials') {
this.fileLoader.setWithCredentials(true);
}
}
GLTFParser.prototype.parse = function (onLoad, onError) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
// Clear the loader cache
this.cache.removeAll();
// Mark the special nodes/meshes in json for efficient parse
this.markDefs();
Promise.all([
this.getDependencies('scene'),
this.getDependencies('animation'),
this.getDependencies('camera'),
]).then(function (dependencies) {
var result = {
scene: dependencies[0][json.scene || 0],
scenes: dependencies[0],
animations: dependencies[1],
cameras: dependencies[2],
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData(extensions, result, json);
assignExtrasToUserData(result, json);
onLoad(result);
}).catch(onError);
};
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
GLTFParser.prototype.markDefs = function () {
var nodeDefs = this.json.nodes || [];
var skinDefs = this.json.skins || [];
var meshDefs = this.json.meshes || [];
var meshReferences = {};
var meshUses = {};
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for (var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ) {
var joints = skinDefs[skinIndex].joints;
for (var i = 0, il = joints.length; i < il; i ) {
nodeDefs[joints[i]].isBone = true;
}
}
// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
// avoid having more than one THREE.Mesh with the same name, count
// references and rename instances below.
//
// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
for (var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ) {
var nodeDef = nodeDefs[nodeIndex];
if (nodeDef.mesh !== undefined) {
if (meshReferences[nodeDef.mesh] === undefined) {
meshReferences[nodeDef.mesh] = meshUses[nodeDef.mesh] = 0;
}
meshReferences[nodeDef.mesh] ;
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if (nodeDef.skin !== undefined) {
meshDefs[nodeDef.mesh].isSkinnedMesh = true;
}
}
}
this.json.meshReferences = meshReferences;
this.json.meshUses = meshUses;
};
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise}
*/
GLTFParser.prototype.getDependency = function (type, index) {
var cacheKey = type ':' index;
var dependency = this.cache.get(cacheKey);
if (!dependency) {
switch (type) {
case 'scene':
dependency = this.loadScene(index);
break;
case 'node':
dependency = this.loadNode(index);
break;
case 'mesh':
dependency = this.loadMesh(index);
break;
case 'accessor':
dependency = this.loadAccessor(index);
break;
case 'bufferView':
dependency = this.loadBufferView(index);
break;
case 'buffer':
dependency = this.loadBuffer(index);
break;
case 'material':
dependency = this.loadMaterial(index);
break;
case 'texture':
dependency = this.loadTexture(index);
break;
case 'skin':
dependency = this.loadSkin(index);
break;
case 'animation':
dependency = this.loadAnimation(index);
break;
case 'camera':
dependency = this.loadCamera(index);
break;
case 'light':
dependency = this.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].loadLight(index);
break;
default:
throw new Error('Unknown type: ' type);
}
this.cache.add(cacheKey, dependency);
}
return dependency;
};
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise>}
*/
GLTFParser.prototype.getDependencies = function (type) {
var dependencies = this.cache.get(type);
if (!dependencies) {
var parser = this;
var defs = this.json[type (type === 'mesh' ? 'es' : 's')] || [];
dependencies = Promise.all(defs.map(function (def, index) {
return parser.getDependency(type, index);
}));
this.cache.add(type, dependencies);
}
return dependencies;
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferIndex
* @return {Promise}
*/
GLTFParser.prototype.loadBuffer = function (bufferIndex) {
var bufferDef = this.json.buffers[bufferIndex];
var loader = this.fileLoader;
if (bufferDef.type && bufferDef.type !== 'arraybuffer') {
throw new Error('THREE.GLTFLoader: ' bufferDef.type ' buffer type is not supported.');
}
// If present, GLB container is required to be the first buffer.
if (bufferDef.uri === undefined && bufferIndex === 0) {
return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body);
}
var options = this.options;
return new Promise(function (resolve, reject) {
loader.load(resolveURL(bufferDef.uri, options.path), resolve, undefined, function () {
reject(new Error('THREE.GLTFLoader: Failed to load buffer "' bufferDef.uri '".'));
});
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferViewIndex
* @return {Promise}
*/
GLTFParser.prototype.loadBufferView = function (bufferViewIndex) {
var bufferViewDef = this.json.bufferViews[bufferViewIndex];
return this.getDependency('buffer', bufferViewDef.buffer).then(function (buffer) {
var byteLength = bufferViewDef.byteLength || 0;
var byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice(byteOffset, byteOffset byteLength);
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
* @param {number} accessorIndex
* @return {Promise}
*/
GLTFParser.prototype.loadAccessor = function (accessorIndex) {
var parser = this;
var json = this.json;
var accessorDef = this.json.accessors[accessorIndex];
if (accessorDef.bufferView === undefined && accessorDef.sparse === undefined) {
// Ignore empty accessors, which may be used to declare runtime
// information about attributes coming from another source (e.g. Draco
// compression extension).
return Promise.resolve(null);
}
var pendingBufferViews = [];
if (accessorDef.bufferView !== undefined) {
pendingBufferViews.push(this.getDependency('bufferView', accessorDef.bufferView));
} else {
pendingBufferViews.push(null);
}
if (accessorDef.sparse !== undefined) {
pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.indices.bufferView));
pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.values.bufferView));
}
return Promise.all(pendingBufferViews).then(function (bufferViews) {
var bufferView = bufferViews[0];
var itemSize = WEBGL_TYPE_SIZES[accessorDef.type];
var TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
var elementBytes = TypedArray.BYTES_PER_ELEMENT;
var itemBytes = elementBytes * itemSize;
var byteOffset = accessorDef.byteOffset || 0;
var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[accessorDef.bufferView].byteStride : undefined;
var normalized = accessorDef.normalized === true;
var array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if (byteStride && byteStride !== itemBytes) {
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
// This makes sure that IBA.count reflects accessor.count properly
var ibSlice = Math.floor(byteOffset / byteStride);
var ibCacheKey = 'InterleavedBuffer:' accessorDef.bufferView ':' accessorDef.componentType ':' ibSlice ':' accessorDef.count;
var ib = parser.cache.get(ibCacheKey);
if (!ib) {
array = new TypedArray(bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes);
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new THREE.InterleavedBuffer(array, byteStride / elementBytes);
parser.cache.add(ibCacheKey, ib);
}
bufferAttribute = new THREE.InterleavedBufferAttribute(ib, itemSize, (byteOffset % byteStride) / elementBytes, normalized);
} else {
if (bufferView === null) {
array = new TypedArray(accessorDef.count * itemSize);
} else {
array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize);
}
bufferAttribute = new THREE.BufferAttribute(array, itemSize, normalized);
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if (accessorDef.sparse !== undefined) {
var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
var TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType];
var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
var sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices);
var sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize);
if (bufferView !== null) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute.setArray(bufferAttribute.array.slice());
}
for (var i = 0, il = sparseIndices.length; i < il; i ) {
var index = sparseIndices[i];
bufferAttribute.setX(index, sparseValues[i * itemSize]);
if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize 1]);
if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize 2]);
if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize 3]);
if (itemSize >= 5) throw new Error('THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.');
}
}
return bufferAttribute;
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
* @param {number} textureIndex
* @return {Promise}
*/
GLTFParser.prototype.loadTexture = function (textureIndex) {
var parser = this;
var json = this.json;
var options = this.options;
var textureLoader = this.textureLoader;
var URL = window.URL || window.webkitURL;
var textureDef = json.textures[textureIndex];
var textureExtensions = textureDef.extensions || {};
var source;
if (textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS]) {
source = json.images[textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS].source];
} else {
source = json.images[textureDef.source];
}
var sourceURI = source.uri;
var isObjectURL = false;
if (source.bufferView !== undefined) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency('bufferView', source.bufferView).then(function (bufferView) {
isObjectURL = true;
var blob = new Blob([bufferView], { type: source.mimeType });
sourceURI = URL.createObjectURL(blob);
return sourceURI;
});
}
return Promise.resolve(sourceURI).then(function (sourceURI) {
// Load Texture resource.
var loader = THREE.Loader.Handlers.get(sourceURI);
if (!loader) {
loader = textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS]
? parser.extensions[EXTENSIONS.MSFT_TEXTURE_DDS].ddsLoader
: textureLoader;
}
return new Promise(function (resolve, reject) {
loader.load(resolveURL(sourceURI, options.path), resolve, undefined, reject);
});
}).then(function (texture) {
// Clean up resources and configure Texture.
if (isObjectURL === true) {
URL.revokeObjectURL(sourceURI);
}
texture.flipY = false;
if (textureDef.name !== undefined) texture.name = textureDef.name;
// Ignore unknown mime types, like DDS files.
if (source.mimeType in MIME_TYPE_FORMATS) {
texture.format = MIME_TYPE_FORMATS[source.mimeType];
}
var samplers = json.samplers || {};
var sampler = samplers[textureDef.sampler] || {};
texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || THREE.LinearFilter;
texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || THREE.LinearMipmapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || THREE.RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || THREE.RepeatWrapping;
return texture;
});
};
/**
* Asynchronously assigns a texture to the given material parameters.
* @param {Object} materialParams
* @param {string} mapName
* @param {Object} mapDef
* @return {Promise}
*/
GLTFParser.prototype.assignTexture = function (materialParams, mapName, mapDef) {
var parser = this;
return this.getDependency('texture', mapDef.index).then(function (texture) {
if (!texture.isCompressedTexture) {
switch (mapName) {
case 'aoMap':
case 'emissiveMap':
case 'metalnessMap':
case 'normalMap':
case 'roughnessMap':
texture.format = THREE.RGBFormat;
break;
}
}
if (parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM]) {
var transform = mapDef.extensions !== undefined ? mapDef.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] : undefined;
if (transform) {
texture = parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM].extendTexture(texture, transform);
}
}
materialParams[mapName] = texture;
});
};
/**
* Assigns final material to a Mesh, Line, or Points instance. The instance
* already has a material (generated from the glTF material options alone)
* but reuse of the same glTF material may require multiple threejs materials
* to accomodate different primitive types, defines, etc. New materials will
* be created if necessary, and reused from a cache.
* @param {THREE.Object3D} mesh Mesh, Line, or Points instance.
*/
GLTFParser.prototype.assignFinalMaterial = function (mesh) {
var geometry = mesh.geometry;
var material = mesh.material;
var extensions = this.extensions;
var useVertexTangents = geometry.attributes.tangent !== undefined;
var useVertexColors = geometry.attributes.color !== undefined;
var useFlatShading = geometry.attributes.normal === undefined;
var useSkinning = mesh.isSkinnedMesh === true;
var useMorphTargets = Object.keys(geometry.morphAttributes).length > 0;
var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;
if (mesh.isPoints) {
var cacheKey = 'PointsMaterial:' material.uuid;
var pointsMaterial = this.cache.get(cacheKey);
if (!pointsMaterial) {
pointsMaterial = new THREE.PointsMaterial();
THREE.Material.prototype.copy.call(pointsMaterial, material);
pointsMaterial.color.copy(material.color);
pointsMaterial.map = material.map;
pointsMaterial.lights = false; // PointsMaterial doesn't support lights yet
pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
this.cache.add(cacheKey, pointsMaterial);
}
material = pointsMaterial;
} else if (mesh.isLine) {
var cacheKey = 'LineBasicMaterial:' material.uuid;
var lineMaterial = this.cache.get(cacheKey);
if (!lineMaterial) {
lineMaterial = new THREE.LineBasicMaterial();
THREE.Material.prototype.copy.call(lineMaterial, material);
lineMaterial.color.copy(material.color);
lineMaterial.lights = false; // LineBasicMaterial doesn't support lights yet
this.cache.add(cacheKey, lineMaterial);
}
material = lineMaterial;
}
// Clone the material if it will be modified
if (useVertexTangents || useVertexColors || useFlatShading || useSkinning || useMorphTargets) {
var cacheKey = 'ClonedMaterial:' material.uuid ':';
if (material.isGLTFSpecularGlossinessMaterial) cacheKey = 'specular-glossiness:';
if (useSkinning) cacheKey = 'skinning:';
if (useVertexTangents) cacheKey = 'vertex-tangents:';
if (useVertexColors) cacheKey = 'vertex-colors:';
if (useFlatShading) cacheKey = 'flat-shading:';
if (useMorphTargets) cacheKey = 'morph-targets:';
if (useMorphNormals) cacheKey = 'morph-normals:';
var cachedMaterial = this.cache.get(cacheKey);
if (!cachedMaterial) {
cachedMaterial = material.isGLTFSpecularGlossinessMaterial
? extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].cloneMaterial(material)
: material.clone();
if (useSkinning) cachedMaterial.skinning = true;
if (useVertexTangents) cachedMaterial.vertexTangents = true;
if (useVertexColors) cachedMaterial.vertexColors = THREE.VertexColors;
if (useFlatShading) cachedMaterial.flatShading = true;
if (useMorphTargets) cachedMaterial.morphTargets = true;
if (useMorphNormals) cachedMaterial.morphNormals = true;
this.cache.add(cacheKey, cachedMaterial);
}
material = cachedMaterial;
}
// workarounds for mesh and geometry
if (material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined) {
console.log('THREE.GLTFLoader: Duplicating UVs to support aoMap.');
geometry.addAttribute('uv2', new THREE.BufferAttribute(geometry.attributes.uv.array, 2));
}
if (material.isGLTFSpecularGlossinessMaterial) {
// for GLTFSpecularGlossinessMaterial(ShaderMaterial) uniforms runtime update
mesh.onBeforeRender = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].refreshUniforms;
}
mesh.material = material;
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
* @param {number} materialIndex
* @return {Promise}
*/
GLTFParser.prototype.loadMaterial = function (materialIndex) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
var materialDef = json.materials[materialIndex];
var materialType;
var materialParams = {};
var materialExtensions = materialDef.extensions || {};
var pending = [];
if (materialExtensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS]) {
var sgExtension = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS];
materialType = sgExtension.getMaterialType();
pending.push(sgExtension.extendParams(materialParams, materialDef, parser));
} else if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) {
var kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT];
materialType = kmuExtension.getMaterialType();
pending.push(kmuExtension.extendParams(materialParams, materialDef, parser));
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
materialType = THREE.MeshStandardMaterial;
var metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
materialParams.opacity = 1.0;
if (Array.isArray(metallicRoughness.baseColorFactor)) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray(array);
materialParams.opacity = array[3];
}
if (metallicRoughness.baseColorTexture !== undefined) {
pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture));
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if (metallicRoughness.metallicRoughnessTexture !== undefined) {
pending.push(parser.assignTexture(materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture));
pending.push(parser.assignTexture(materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture));
}
}
if (materialDef.doubleSided === true) {
materialParams.side = THREE.DoubleSide;
}
var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if (alphaMode === ALPHA_MODES.BLEND) {
materialParams.transparent = true;
} else {
materialParams.transparent = false;
if (alphaMode === ALPHA_MODES.MASK) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if (materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, 'normalMap', materialDef.normalTexture));
materialParams.normalScale = new THREE.Vector2(1, 1);
if (materialDef.normalTexture.scale !== undefined) {
materialParams.normalScale.set(materialDef.normalTexture.scale, materialDef.normalTexture.scale);
}
}
if (materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, 'aoMap', materialDef.occlusionTexture));
if (materialDef.occlusionTexture.strength !== undefined) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if (materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial) {
materialParams.emissive = new THREE.Color().fromArray(materialDef.emissiveFactor);
}
if (materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, 'emissiveMap', materialDef.emissiveTexture));
}
return Promise.all(pending).then(function () {
var material;
if (materialType === THREE.ShaderMaterial) {
material = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].createMaterial(materialParams);
} else {
material = new materialType(materialParams);
}
if (materialDef.name !== undefined) material.name = materialDef.name;
// baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding.
if (material.map) material.map.encoding = THREE.sRGBEncoding;
if (material.emissiveMap) material.emissiveMap.encoding = THREE.sRGBEncoding;
if (material.specularMap) material.specularMap.encoding = THREE.sRGBEncoding;
assignExtrasToUserData(material, materialDef);
if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef);
return material;
});
};
/**
* @param {THREE.BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
* @return {Promise}
*/
function addPrimitiveAttributes(geometry, primitiveDef, parser) {
var attributes = primitiveDef.attributes;
var pending = [];
function assignAttributeAccessor(accessorIndex, attributeName) {
return parser.getDependency('accessor', accessorIndex)
.then(function (accessor) {
geometry.addAttribute(attributeName, accessor);
});
}
for (var gltfAttributeName in attributes) {
var threeAttributeName = ATTRIBUTES[gltfAttributeName] || gltfAttributeName.toLowerCase();
// Skip attributes already provided by e.g. Draco extension.
if (threeAttributeName in geometry.attributes) continue;
pending.push(assignAttributeAccessor(attributes[gltfAttributeName], threeAttributeName));
}
if (primitiveDef.indices !== undefined && !geometry.index) {
var accessor = parser.getDependency('accessor', primitiveDef.indices).then(function (accessor) {
geometry.setIndex(accessor);
});
pending.push(accessor);
}
assignExtrasToUserData(geometry, primitiveDef);
return Promise.all(pending).then(function () {
return primitiveDef.targets !== undefined
? addMorphTargets(geometry, primitiveDef.targets, parser)
: geometry;
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
*
* @param {Array} primitives
* @return {Promise>}
*/
GLTFParser.prototype.loadGeometries = function (primitives) {
var parser = this;
var extensions = this.extensions;
var cache = this.primitiveCache;
function createDracoPrimitive(primitive) {
return extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]
.decodePrimitive(primitive, parser)
.then(function (geometry) {
return addPrimitiveAttributes(geometry, primitive, parser);
});
}
var pending = [];
for (var i = 0, il = primitives.length; i < il; i ) {
var primitive = primitives[i];
var cacheKey = createPrimitiveKey(primitive);
// See if we've already created this geometry
var cached = cache[cacheKey];
if (cached) {
// Use the cached geometry if it exists
pending.push(cached.promise);
} else {
var geometryPromise;
if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) {
// Use DRACO geometry if available
geometryPromise = createDracoPrimitive(primitive);
} else {
// Otherwise create a new geometry
geometryPromise = addPrimitiveAttributes(new THREE.BufferGeometry(), primitive, parser);
}
// Cache this geometry
cache[cacheKey] = { primitive: primitive, promise: geometryPromise };
pending.push(geometryPromise);
}
}
return Promise.all(pending);
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
* @param {number} meshIndex
* @return {Promise}
*/
GLTFParser.prototype.loadMesh = function (meshIndex) {
var parser = this;
var json = this.json;
var meshDef = json.meshes[meshIndex];
var primitives = meshDef.primitives;
var pending = [];
for (var i = 0, il = primitives.length; i < il; i ) {
var material = primitives[i].material === undefined
? createDefaultMaterial()
: this.getDependency('material', primitives[i].material);
pending.push(material);
}
return Promise.all(pending).then(function (originalMaterials) {
return parser.loadGeometries(primitives).then(function (geometries) {
var meshes = [];
for (var i = 0, il = geometries.length; i < il; i ) {
var geometry = geometries[i];
var primitive = primitives[i];
// 1. create Mesh
var mesh;
var material = originalMaterials[i];
if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
primitive.mode === undefined) {
// .isSkinnedMesh isn't in glTF spec. See .markDefs()
mesh = meshDef.isSkinnedMesh === true
? new THREE.SkinnedMesh(geometry, material)
: new THREE.Mesh(geometry, material);
if (mesh.isSkinnedMesh === true && !mesh.geometry.attributes.skinWeight.normalized) {
// we normalize floating point skin weight array to fix malformed assets (see #15319)
// it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs
mesh.normalizeSkinWeights();
}
if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) {
mesh.drawMode = THREE.TriangleStripDrawMode;
} else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) {
mesh.drawMode = THREE.TriangleFanDrawMode;
}
} else if (primitive.mode === WEBGL_CONSTANTS.LINES) {
mesh = new THREE.LineSegments(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) {
mesh = new THREE.Line(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) {
mesh = new THREE.LineLoop(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.POINTS) {
mesh = new THREE.Points(geometry, material);
} else {
throw new Error('THREE.GLTFLoader: Primitive mode unsupported: ' primitive.mode);
}
if (Object.keys(mesh.geometry.morphAttributes).length > 0) {
updateMorphTargets(mesh, meshDef);
}
mesh.name = meshDef.name || ('mesh_' meshIndex);
if (geometries.length > 1) mesh.name = '_' i;
assignExtrasToUserData(mesh, meshDef);
parser.assignFinalMaterial(mesh);
meshes.push(mesh);
}
if (meshes.length === 1) {
return meshes[0];
}
var group = new THREE.Group();
for (var i = 0, il = meshes.length; i < il; i ) {
group.add(meshes[i]);
}
return group;
});
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
* @param {number} cameraIndex
* @return {Promise}
*/
GLTFParser.prototype.loadCamera = function (cameraIndex) {
var camera;
var cameraDef = this.json.cameras[cameraIndex];
var params = cameraDef[cameraDef.type];
if (!params) {
console.warn('THREE.GLTFLoader: Missing camera parameters.');
return;
}
if (cameraDef.type === 'perspective') {
camera = new THREE.PerspectiveCamera(THREE.Math.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6);
} else if (cameraDef.type === 'orthographic') {
camera = new THREE.OrthographicCamera(params.xmag / - 2, params.xmag / 2, params.ymag / 2, params.ymag / - 2, params.znear, params.zfar);
}
if (cameraDef.name !== undefined) camera.name = cameraDef.name;
assignExtrasToUserData(camera, cameraDef);
return Promise.resolve(camera);
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
* @param {number} skinIndex
* @return {Promise}
*/
GLTFParser.prototype.loadSkin = function (skinIndex) {
var skinDef = this.json.skins[skinIndex];
var skinEntry = { joints: skinDef.joints };
if (skinDef.inverseBindMatrices === undefined) {
return Promise.resolve(skinEntry);
}
return this.getDependency('accessor', skinDef.inverseBindMatrices).then(function (accessor) {
skinEntry.inverseBindMatrices = accessor;
return skinEntry;
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
* @param {number} animationIndex
* @return {Promise}
*/
GLTFParser.prototype.loadAnimation = function (animationIndex) {
var json = this.json;
var animationDef = json.animations[animationIndex];
var pendingNodes = [];
var pendingInputAccessors = [];
var pendingOutputAccessors = [];
var pendingSamplers = [];
var pendingTargets = [];
for (var i = 0, il = animationDef.channels.length; i < il; i ) {
var channel = animationDef.channels[i];
var sampler = animationDef.samplers[channel.sampler];
var target = channel.target;
var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
var input = animationDef.parameters !== undefined ? animationDef.parameters[sampler.input] : sampler.input;
var output = animationDef.parameters !== undefined ? animationDef.parameters[sampler.output] : sampler.output;
pendingNodes.push(this.getDependency('node', name));
pendingInputAccessors.push(this.getDependency('accessor', input));
pendingOutputAccessors.push(this.getDependency('accessor', output));
pendingSamplers.push(sampler);
pendingTargets.push(target);
}
return Promise.all([
Promise.all(pendingNodes),
Promise.all(pendingInputAccessors),
Promise.all(pendingOutputAccessors),
Promise.all(pendingSamplers),
Promise.all(pendingTargets)
]).then(function (dependencies) {
var nodes = dependencies[0];
var inputAccessors = dependencies[1];
var outputAccessors = dependencies[2];
var samplers = dependencies[3];
var targets = dependencies[4];
var tracks = [];
for (var i = 0, il = nodes.length; i < il; i ) {
var node = nodes[i];
var inputAccessor = inputAccessors[i];
var outputAccessor = outputAccessors[i];
var sampler = samplers[i];
var target = targets[i];
if (node === undefined) continue;
node.updateMatrix();
node.matrixAutoUpdate = true;
var TypedKeyframeTrack;
switch (PATH_PROPERTIES[target.path]) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = THREE.NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = THREE.QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.position:
case PATH_PROPERTIES.scale:
default:
TypedKeyframeTrack = THREE.VectorKeyframeTrack;
break;
}
var targetName = node.name ? node.name : node.uuid;
var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[sampler.interpolation] : THREE.InterpolateLinear;
var targetNames = [];
if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) {
// Node may be a THREE.Group (glTF mesh with several primitives) or a THREE.Mesh.
node.traverse(function (object) {
if (object.isMesh === true && object.morphTargetInfluences) {
targetNames.push(object.name ? object.name : object.uuid);
}
});
} else {
targetNames.push(targetName);
}
var outputArray = outputAccessor.array;
if (outputAccessor.normalized) {
var scale;
if (outputArray.constructor === Int8Array) {
scale = 1 / 127;
} else if (outputArray.constructor === Uint8Array) {
scale = 1 / 255;
} else if (outputArray.constructor == Int16Array) {
scale = 1 / 32767;
} else if (outputArray.constructor === Uint16Array) {
scale = 1 / 65535;
} else {
throw new Error('THREE.GLTFLoader: Unsupported output accessor component type.');
}
var scaled = new Float32Array(outputArray.length);
for (var j = 0, jl = outputArray.length; j < jl; j ) {
scaled[j] = outputArray[j] * scale;
}
outputArray = scaled;
}
for (var j = 0, jl = targetNames.length; j < jl; j ) {
var track = new TypedKeyframeTrack(
targetNames[j] '.' PATH_PROPERTIES[target.path],
inputAccessor.array,
outputArray,
interpolation
);
// Override interpolation with custom factory method.
if (sampler.interpolation === 'CUBICSPLINE') {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline(result) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
return new GLTFCubicSplineInterpolant(this.times, this.values, this.getValueSize() / 3, result);
};
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
tracks.push(track);
}
}
var name = animationDef.name !== undefined ? animationDef.name : 'animation_' animationIndex;
return new THREE.AnimationClip(name, undefined, tracks);
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
* @param {number} nodeIndex
* @return {Promise}
*/
GLTFParser.prototype.loadNode = function (nodeIndex) {
var json = this.json;
var extensions = this.extensions;
var parser = this;
var meshReferences = json.meshReferences;
var meshUses = json.meshUses;
var nodeDef = json.nodes[nodeIndex];
return (function () {
var pending = [];
if (nodeDef.mesh !== undefined) {
pending.push(parser.getDependency('mesh', nodeDef.mesh).then(function (mesh) {
var node;
if (meshReferences[nodeDef.mesh] > 1) {
var instanceNum = meshUses[nodeDef.mesh] ;
node = mesh.clone();
node.name = '_instance_' instanceNum;
// onBeforeRender copy for Specular-Glossiness
node.onBeforeRender = mesh.onBeforeRender;
for (var i = 0, il = node.children.length; i < il; i ) {
node.children[i].name = '_instance_' instanceNum;
node.children[i].onBeforeRender = mesh.children[i].onBeforeRender;
}
} else {
node = mesh;
}
// if weights are provided on the node, override weights on the mesh.
if (nodeDef.weights !== undefined) {
node.traverse(function (o) {
if (!o.isMesh) return;
for (var i = 0, il = nodeDef.weights.length; i < il; i ) {
o.morphTargetInfluences[i] = nodeDef.weights[i];
}
});
}
return node;
}));
}
if (nodeDef.camera !== undefined) {
pending.push(parser.getDependency('camera', nodeDef.camera));
}
if (nodeDef.extensions
&& nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL]
&& nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].light !== undefined) {
pending.push(parser.getDependency('light', nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].light));
}
return Promise.all(pending);
}()).then(function (objects) {
var node;
// .isBone isn't in glTF spec. See .markDefs
if (nodeDef.isBone === true) {
node = new THREE.Bone();
} else if (objects.length > 1) {
node = new THREE.Group();
} else if (objects.length === 1) {
node = objects[0];
} else {
node = new THREE.Object3D();
}
if (node !== objects[0]) {
for (var i = 0, il = objects.length; i < il; i ) {
node.add(objects[i]);
}
}
if (nodeDef.name !== undefined) {
node.userData.name = nodeDef.name;
node.name = THREE.PropertyBinding.sanitizeNodeName(nodeDef.name);
}
assignExtrasToUserData(node, nodeDef);
if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef);
if (nodeDef.matrix !== undefined) {
var matrix = new THREE.Matrix4();
matrix.fromArray(nodeDef.matrix);
node.applyMatrix(matrix);
} else {
if (nodeDef.translation !== undefined) {
node.position.fromArray(nodeDef.translation);
}
if (nodeDef.rotation !== undefined) {
node.quaternion.fromArray(nodeDef.rotation);
}
if (nodeDef.scale !== undefined) {
node.scale.fromArray(nodeDef.scale);
}
}
return node;
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
* @param {number} sceneIndex
* @return {Promise}
*/
GLTFParser.prototype.loadScene = function () {
// scene node hierachy builder
function buildNodeHierachy(nodeId, parentObject, json, parser) {
var nodeDef = json.nodes[nodeId];
return parser.getDependency('node', nodeId).then(function (node) {
if (nodeDef.skin === undefined) return node;
// build skeleton here as well
var skinEntry;
return parser.getDependency('skin', nodeDef.skin).then(function (skin) {
skinEntry = skin;
var pendingJoints = [];
for (var i = 0, il = skinEntry.joints.length; i < il; i ) {
pendingJoints.push(parser.getDependency('node', skinEntry.joints[i]));
}
return Promise.all(pendingJoints);
}).then(function (jointNodes) {
node.traverse(function (mesh) {
if (!mesh.isMesh) return;
var bones = [];
var boneInverses = [];
for (var j = 0, jl = jointNodes.length; j < jl; j ) {
var jointNode = jointNodes[j];
if (jointNode) {
bones.push(jointNode);
var mat = new THREE.Matrix4();
if (skinEntry.inverseBindMatrices !== undefined) {
mat.fromArray(skinEntry.inverseBindMatrices.array, j * 16);
}
boneInverses.push(mat);
} else {
console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[j]);
}
}
mesh.bind(new THREE.Skeleton(bones, boneInverses), mesh.matrixWorld);
});
return node;
});
}).then(function (node) {
// build node hierachy
parentObject.add(node);
var pending = [];
if (nodeDef.children) {
var children = nodeDef.children;
for (var i = 0, il = children.length; i < il; i ) {
var child = children[i];
pending.push(buildNodeHierachy(child, node, json, parser));
}
}
return Promise.all(pending);
});
}
return function loadScene(sceneIndex) {
var json = this.json;
var extensions = this.extensions;
var sceneDef = this.json.scenes[sceneIndex];
var parser = this;
var scene = new THREE.Scene();
if (sceneDef.name !== undefined) scene.name = sceneDef.name;
assignExtrasToUserData(scene, sceneDef);
if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef);
var nodeIds = sceneDef.nodes || [];
var pending = [];
for (var i = 0, il = nodeIds.length; i < il; i ) {
pending.push(buildNodeHierachy(nodeIds[i], scene, json, parser));
}
return Promise.all(pending).then(function () {
return scene;
});
};
}();
return GLTFLoader;
})();
}
/**
* @author qiao / https://github.com/qiao
* @author mrdoob / http://mrdoob.com
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author erich666 / http://erichaines.com
* @author ScieCode / http://github.com/sciecode
*/
const registerOrbit = (THREE) => {
const {
EventDispatcher,
MOUSE,
Quaternion,
Spherical,
TOUCH,
Vector2,
Vector3
} = THREE
// This set of controls performs orbiting, dollying (zooming), and panning.
// Unlike TrackballControls, it maintains the "up" direction object.up ( Y by default).
//
// Orbit - left mouse / touch: one-finger move
// Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
// Pan - right mouse, or left mouse ctrl/meta/shiftKey, or arrow keys / touch: two-finger move
var OrbitControls = function (object, domElement) {
if (domElement === undefined) console.warn('THREE.OrbitControls: The second parameter "domElement" is now mandatory.');
if (domElement === document) console.error('THREE.OrbitControls: "document" should not be used as the target "domElement". Please use "renderer.domElement" instead.');
this.object = object;
this.domElement = domElement;
// Set to false to disable this control
this.enabled = true;
// "target" sets the location of focus, where the object orbits around
this.target = new Vector3();
// How far you can dolly in and out ( PerspectiveCamera only )
this.minDistance = 0;
this.maxDistance = Infinity;
// How far you can zoom in and out ( OrthographicCamera only )
this.minZoom = 0;
this.maxZoom = Infinity;
// How far you can orbit vertically, upper and lower limits.
// Range is 0 to Math.PI radians.
this.minPolarAngle = 0; // radians
this.maxPolarAngle = Math.PI; // radians
// How far you can orbit horizontally, upper and lower limits.
// If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ].
this.minAzimuthAngle = -Infinity; // radians
this.maxAzimuthAngle = Infinity; // radians
// Set to true to enable damping (inertia)
// If damping is enabled, you must call controls.update() in your animation loop
this.enableDamping = false;
this.dampingFactor = 0.05;
// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
// Set to false to disable zooming
this.enableZoom = true;
this.zoomSpeed = 1.0;
// Set to false to disable rotating
this.enableRotate = true;
this.rotateSpeed = 1.0;
// Set to false to disable panning
this.enablePan = true;
this.panSpeed = 1.0;
this.screenSpacePanning = false; // if true, pan in screen-space
this.keyPanSpeed = 7.0; // pixels moved per arrow key push
// Set to true to automatically rotate around the target
// If auto-rotate is enabled, you must call controls.update() in your animation loop
this.autoRotate = false;
this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60
// Set to false to disable use of the keys
this.enableKeys = true;
// The four arrow keys
this.keys = {
LEFT: 37,
UP: 38,
RIGHT: 39,
BOTTOM: 40
};
// Mouse buttons
this.mouseButtons = {
LEFT: MOUSE.ROTATE,
MIDDLE: MOUSE.DOLLY,
RIGHT: MOUSE.PAN
};
// Touch fingers
this.touches = {
ONE: TOUCH.ROTATE,
TWO: TOUCH.DOLLY_PAN
};
// for reset
this.target0 = this.target.clone();
this.position0 = this.object.position.clone();
this.zoom0 = this.object.zoom;
//
// public methods
//
this.getPolarAngle = function () {
return spherical.phi;
};
this.getAzimuthalAngle = function () {
return spherical.theta;
};
this.saveState = function () {
scope.target0.copy(scope.target);
scope.position0.copy(scope.object.position);
scope.zoom0 = scope.object.zoom;
};
this.reset = function () {
scope.target.copy(scope.target0);
scope.object.position.copy(scope.position0);
scope.object.zoom = scope.zoom0;
scope.object.updateProjectionMatrix();
scope.dispatchEvent(changeEvent);
scope.update();
state = STATE.NONE;
};
// this method is exposed, but perhaps it would be better if we can make it private...
this.update = function () {
var offset = new Vector3();
// so camera.up is the orbit axis
var quat = new Quaternion().setFromUnitVectors(object.up, new Vector3(0, 1, 0));
var quatInverse = quat.clone().inverse();
var lastPosition = new Vector3();
var lastQuaternion = new Quaternion();
return function update() {
var position = scope.object.position;
offset.copy(position).sub(scope.target);
// rotate offset to "y-axis-is-up" space
offset.applyQuaternion(quat);
// angle from z-axis around y-axis
spherical.setFromVector3(offset);
if (scope.autoRotate && state === STATE.NONE) {
rotateLeft(getAutoRotationAngle());
}
if (scope.enableDamping) {
spherical.theta = sphericalDelta.theta * scope.dampingFactor;
spherical.phi = sphericalDelta.phi * scope.dampingFactor;
} else {
spherical.theta = sphericalDelta.theta;
spherical.phi = sphericalDelta.phi;
}
// restrict theta to be between desired limits
spherical.theta = Math.max(scope.minAzimuthAngle, Math.min(scope.maxAzimuthAngle, spherical.theta));
// restrict phi to be between desired limits
spherical.phi = Math.max(scope.minPolarAngle, Math.min(scope.maxPolarAngle, spherical.phi));
spherical.makeSafe();
spherical.radius *= scale;
// restrict radius to be between desired limits
spherical.radius = Math.max(scope.minDistance, Math.min(scope.maxDistance, spherical.radius));
// move target to panned location
if (scope.enableDamping === true) {
scope.target.addScaledVector(panOffset, scope.dampingFactor);
} else {
scope.target.add(panOffset);
}
offset.setFromSpherical(spherical);
// rotate offset back to "camera-up-vector-is-up" space
offset.applyQuaternion(quatInverse);
position.copy(scope.target).add(offset);
scope.object.lookAt(scope.target);
if (scope.enableDamping === true) {
sphericalDelta.theta *= (1 - scope.dampingFactor);
sphericalDelta.phi *= (1 - scope.dampingFactor);
panOffset.multiplyScalar(1 - scope.dampingFactor);
} else {
sphericalDelta.set(0, 0, 0);
panOffset.set(0, 0, 0);
}
scale = 1;
// update condition is:
// min(camera displacement, camera rotation in radians)^2 > EPS
// using small-angle approximation cos(x/2) = 1 - x^2 / 8
if (zoomChanged ||
lastPosition.distanceToSquared(scope.object.position) > EPS ||
8 * (1 - lastQuaternion.dot(scope.object.quaternion)) > EPS) {
scope.dispatchEvent(changeEvent);
lastPosition.copy(scope.object.position);
lastQuaternion.copy(scope.object.quaternion);
zoomChanged = false;
return true;
}
return false;
};
}();
this.dispose = function () {
scope.domElement.removeEventListener('contextmenu', onContextMenu, false);
scope.domElement.removeEventListener('mousedown', onMouseDown, false);
scope.domElement.removeEventListener('wheel', onMouseWheel, false);
scope.domElement.removeEventListener('touchstart', onTouchStart, false);
scope.domElement.removeEventListener('touchend', onTouchEnd, false);
scope.domElement.removeEventListener('touchmove', onTouchMove, false);
document.removeEventListener('mousemove', onMouseMove, false);
document.removeEventListener('mouseup', onMouseUp, false);
scope.domElement.removeEventListener('keydown', onKeyDown, false);
//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?
};
//
// internals
//
var scope = this;
var changeEvent = {
type: 'change'
};
var startEvent = {
type: 'start'
};
var endEvent = {
type: 'end'
};
var STATE = {
NONE: -1,
ROTATE: 0,
DOLLY: 1,
PAN: 2,
TOUCH_ROTATE: 3,
TOUCH_PAN: 4,
TOUCH_DOLLY_PAN: 5,
TOUCH_DOLLY_ROTATE: 6
};
var state = STATE.NONE;
var EPS = 0.000001;
// current position in spherical coordinates
var spherical = new Spherical();
var sphericalDelta = new Spherical();
var scale = 1;
var panOffset = new Vector3();
var zoomChanged = false;
var rotateStart = new Vector2();
var rotateEnd = new Vector2();
var rotateDelta = new Vector2();
var panStart = new Vector2();
var panEnd = new Vector2();
var panDelta = new Vector2();
var dollyStart = new Vector2();
var dollyEnd = new Vector2();
var dollyDelta = new Vector2();
function getAutoRotationAngle() {
return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;
}
function getZoomScale() {
return Math.pow(0.95, scope.zoomSpeed);
}
function rotateLeft(angle) {
sphericalDelta.theta -= angle;
}
function rotateUp(angle) {
sphericalDelta.phi -= angle;
}
var panLeft = function () {
var v = new Vector3();
return function panLeft(distance, objectMatrix) {
v.setFromMatrixColumn(objectMatrix, 0); // get X column of objectMatrix
v.multiplyScalar(-distance);
panOffset.add(v);
};
}();
var panUp = function () {
var v = new Vector3();
return function panUp(distance, objectMatrix) {
if (scope.screenSpacePanning === true) {
v.setFromMatrixColumn(objectMatrix, 1);
} else {
v.setFromMatrixColumn(objectMatrix, 0);
v.crossVectors(scope.object.up, v);
}
v.multiplyScalar(distance);
panOffset.add(v);
};
}();
// deltaX and deltaY are in pixels; right and down are positive
var pan = function () {
var offset = new Vector3();
return function pan(deltaX, deltaY) {
var element = scope.domElement;
if (scope.object.isPerspectiveCamera) {
// perspective
var position = scope.object.position;
offset.copy(position).sub(scope.target);
var targetDistance = offset.length();
// half of the fov is center to top of screen
targetDistance *= Math.tan((scope.object.fov / 2) * Math.PI / 180.0);
// we use only clientHeight here so aspect ratio does not distort speed
panLeft(2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix);
panUp(2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix);
} else if (scope.object.isOrthographicCamera) {
// orthographic
panLeft(deltaX * (scope.object.right - scope.object.left) / scope.object.zoom / element.clientWidth, scope.object.matrix);
panUp(deltaY * (scope.object.top - scope.object.bottom) / scope.object.zoom / element.clientHeight, scope.object.matrix);
} else {
// camera neither orthographic nor perspective
console.warn('WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.');
scope.enablePan = false;
}
};
}();
function dollyOut(dollyScale) {
if (scope.object.isPerspectiveCamera) {
scale /= dollyScale;
} else if (scope.object.isOrthographicCamera) {
scope.object.zoom = Math.max(scope.minZoom, Math.min(scope.maxZoom, scope.object.zoom * dollyScale));
scope.object.updateProjectionMatrix();
zoomChanged = true;
} else {
console.warn('WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.');
scope.enableZoom = false;
}
}
function dollyIn(dollyScale) {
if (scope.object.isPerspectiveCamera) {
scale *= dollyScale;
} else if (scope.object.isOrthographicCamera) {
scope.object.zoom = Math.max(scope.minZoom, Math.min(scope.maxZoom, scope.object.zoom / dollyScale));
scope.object.updateProjectionMatrix();
zoomChanged = true;
} else {
console.warn('WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.');
scope.enableZoom = false;
}
}
//
// event callbacks - update the object state
//
function handleMouseDownRotate(event) {
rotateStart.set(event.clientX, event.clientY);
}
function handleMouseDownDolly(event) {
dollyStart.set(event.clientX, event.clientY);
}
function handleMouseDownPan(event) {
panStart.set(event.clientX, event.clientY);
}
function handleMouseMoveRotate(event) {
rotateEnd.set(event.clientX, event.clientY);
rotateDelta.subVectors(rotateEnd, rotateStart).multiplyScalar(scope.rotateSpeed);
var element = scope.domElement;
rotateLeft(2 * Math.PI * rotateDelta.x / element.clientHeight); // yes, height
rotateUp(2 * Math.PI * rotateDelta.y / element.clientHeight);
rotateStart.copy(rotateEnd);
scope.update();
}
function handleMouseMoveDolly(event) {
dollyEnd.set(event.clientX, event.clientY);
dollyDelta.subVectors(dollyEnd, dollyStart);
if (dollyDelta.y > 0) {
dollyOut(getZoomScale());
} else if (dollyDelta.y < 0) {
dollyIn(getZoomScale());
}
dollyStart.copy(dollyEnd);
scope.update();
}
function handleMouseMovePan(event) {
panEnd.set(event.clientX, event.clientY);
panDelta.subVectors(panEnd, panStart).multiplyScalar(scope.panSpeed);
pan(panDelta.x, panDelta.y);
panStart.copy(panEnd);
scope.update();
}
function handleMouseUp( /*event*/ ) {
// no-op
}
function handleMouseWheel(event) {
if (event.deltaY < 0) {
dollyIn(getZoomScale());
} else if (event.deltaY > 0) {
dollyOut(getZoomScale());
}
scope.update();
}
function handleKeyDown(event) {
var needsUpdate = false;
switch (event.keyCode) {
case scope.keys.UP:
pan(0, scope.keyPanSpeed);
needsUpdate = true;
break;
case scope.keys.BOTTOM:
pan(0, -scope.keyPanSpeed);
needsUpdate = true;
break;
case scope.keys.LEFT:
pan(scope.keyPanSpeed, 0);
needsUpdate = true;
break;
case scope.keys.RIGHT:
pan(-scope.keyPanSpeed, 0);
needsUpdate = true;
break;
}
if (needsUpdate) {
// prevent the browser from scrolling on cursor keys
event.preventDefault();
scope.update();
}
}
function handleTouchStartRotate(event) {
if (event.touches.length == 1) {
rotateStart.set(event.touches[0].pageX, event.touches[0].pageY);
} else {
var x = 0.5 * (event.touches[0].pageX event.touches[1].pageX);
var y = 0.5 * (event.touches[0].pageY event.touches[1].pageY);
rotateStart.set(x, y);
}
}
function handleTouchStartPan(event) {
if (event.touches.length == 1) {
panStart.set(event.touches[0].pageX, event.touches[0].pageY);
} else {
var x = 0.5 * (event.touches[0].pageX event.touches[1].pageX);
var y = 0.5 * (event.touches[0].pageY event.touches[1].pageY);
panStart.set(x, y);
}
}
function handleTouchStartDolly(event) {
var dx = event.touches[0].pageX - event.touches[1].pageX;
var dy = event.touches[0].pageY - event.touches[1].pageY;
var distance = Math.sqrt(dx * dx dy * dy);
dollyStart.set(0, distance);
}
function handleTouchStartDollyPan(event) {
if (scope.enableZoom) handleTouchStartDolly(event);
if (scope.enablePan) handleTouchStartPan(event);
}
function handleTouchStartDollyRotate(event) {
if (scope.enableZoom) handleTouchStartDolly(event);
if (scope.enableRotate) handleTouchStartRotate(event);
}
function handleTouchMoveRotate(event) {
if (event.touches.length == 1) {
rotateEnd.set(event.touches[0].pageX, event.touches[0].pageY);
} else {
var x = 0.5 * (event.touches[0].pageX event.touches[1].pageX);
var y = 0.5 * (event.touches[0].pageY event.touches[1].pageY);
rotateEnd.set(x, y);
}
rotateDelta.subVectors(rotateEnd, rotateStart).multiplyScalar(scope.rotateSpeed);
var element = scope.domElement;
rotateLeft(2 * Math.PI * rotateDelta.x / element.clientHeight); // yes, height
rotateUp(2 * Math.PI * rotateDelta.y / element.clientHeight);
rotateStart.copy(rotateEnd);
}
function handleTouchMovePan(event) {
if (event.touches.length == 1) {
panEnd.set(event.touches[0].pageX, event.touches[0].pageY);
} else {
var x = 0.5 * (event.touches[0].pageX event.touches[1].pageX);
var y = 0.5 * (event.touches[0].pageY event.touches[1].pageY);
panEnd.set(x, y);
}
panDelta.subVectors(panEnd, panStart).multiplyScalar(scope.panSpeed);
pan(panDelta.x, panDelta.y);
panStart.copy(panEnd);
}
function handleTouchMoveDolly(event) {
var dx = event.touches[0].pageX - event.touches[1].pageX;
var dy = event.touches[0].pageY - event.touches[1].pageY;
var distance = Math.sqrt(dx * dx dy * dy);
dollyEnd.set(0, distance);
dollyDelta.set(0, Math.pow(dollyEnd.y / dollyStart.y, scope.zoomSpeed));
dollyOut(dollyDelta.y);
dollyStart.copy(dollyEnd);
}
function handleTouchMoveDollyPan(event) {
if (scope.enableZoom) handleTouchMoveDolly(event);
if (scope.enablePan) handleTouchMovePan(event);
}
function handleTouchMoveDollyRotate(event) {
if (scope.enableZoom) handleTouchMoveDolly(event);
if (scope.enableRotate) handleTouchMoveRotate(event);
}
function handleTouchEnd( /*event*/ ) {
// no-op
}
//
// event handlers - FSM: listen for events and reset state
//
function onMouseDown(event) {
if (scope.enabled === false) return;
// Prevent the browser from scrolling.
event.preventDefault();
// Manually set the focus since calling preventDefault above
// prevents the browser from setting it automatically.
scope.domElement.focus ? scope.domElement.focus() : window.focus();
var mouseAction;
switch (event.button) {
case 0:
mouseAction = scope.mouseButtons.LEFT;
break;
case 1:
mouseAction = scope.mouseButtons.MIDDLE;
break;
case 2:
mouseAction = scope.mouseButtons.RIGHT;
break;
default:
mouseAction = -1;
}
switch (mouseAction) {
case MOUSE.DOLLY:
if (scope.enableZoom === false) return;
handleMouseDownDolly(event);
state = STATE.DOLLY;
break;
case MOUSE.ROTATE:
if (event.ctrlKey || event.metaKey || event.shiftKey) {
if (scope.enablePan === false) return;
handleMouseDownPan(event);
state = STATE.PAN;
} else {
if (scope.enableRotate === false) return;
handleMouseDownRotate(event);
state = STATE.ROTATE;
}
break;
case MOUSE.PAN:
if (event.ctrlKey || event.metaKey || event.shiftKey) {
if (scope.enableRotate === false) return;
handleMouseDownRotate(event);
state = STATE.ROTATE;
} else {
if (scope.enablePan === false) return;
handleMouseDownPan(event);
state = STATE.PAN;
}
break;
default:
state = STATE.NONE;
}
if (state !== STATE.NONE) {
document.addEventListener('mousemove', onMouseMove, false);
document.addEventListener('mouseup', onMouseUp, false);
scope.dispatchEvent(startEvent);
}
}
function onMouseMove(event) {
if (scope.enabled === false) return;
event.preventDefault();
switch (state) {
case STATE.ROTATE:
if (scope.enableRotate === false) return;
handleMouseMoveRotate(event);
break;
case STATE.DOLLY:
if (scope.enableZoom === false) return;
handleMouseMoveDolly(event);
break;
case STATE.PAN:
if (scope.enablePan === false) return;
handleMouseMovePan(event);
break;
}
}
function onMouseUp(event) {
if (scope.enabled === false) return;
handleMouseUp(event);
document.removeEventListener('mousemove', onMouseMove, false);
document.removeEventListener('mouseup', onMouseUp, false);
scope.dispatchEvent(endEvent);
state = STATE.NONE;
}
function onMouseWheel(event) {
if (scope.enabled === false || scope.enableZoom === false || (state !== STATE.NONE && state !== STATE.ROTATE)) return;
event.preventDefault();
event.stopPropagation();
scope.dispatchEvent(startEvent);
handleMouseWheel(event);
scope.dispatchEvent(endEvent);
}
function onKeyDown(event) {
if (scope.enabled === false || scope.enableKeys === false || scope.enablePan === false) return;
handleKeyDown(event);
}
function onTouchStart(event) {
if (scope.enabled === false) return;
event.preventDefault(); // prevent scrolling
switch (event.touches.length) {
case 1:
switch (scope.touches.ONE) {
case TOUCH.ROTATE:
if (scope.enableRotate === false) return;
handleTouchStartRotate(event);
state = STATE.TOUCH_ROTATE;
break;
case TOUCH.PAN:
if (scope.enablePan === false) return;
handleTouchStartPan(event);
state = STATE.TOUCH_PAN;
break;
default:
state = STATE.NONE;
}
break;
case 2:
switch (scope.touches.TWO) {
case TOUCH.DOLLY_PAN:
if (scope.enableZoom === false && scope.enablePan === false) return;
handleTouchStartDollyPan(event);
state = STATE.TOUCH_DOLLY_PAN;
break;
case TOUCH.DOLLY_ROTATE:
if (scope.enableZoom === false && scope.enableRotate === false) return;
handleTouchStartDollyRotate(event);
state = STATE.TOUCH_DOLLY_ROTATE;
break;
default:
state = STATE.NONE;
}
break;
default:
state = STATE.NONE;
}
if (state !== STATE.NONE) {
scope.dispatchEvent(startEvent);
}
}
function onTouchMove(event) {
if (scope.enabled === false) return;
event.preventDefault(); // prevent scrolling
event.stopPropagation();
switch (state) {
case STATE.TOUCH_ROTATE:
if (scope.enableRotate === false) return;
handleTouchMoveRotate(event);
scope.update();
break;
case STATE.TOUCH_PAN:
if (scope.enablePan === false) return;
handleTouchMovePan(event);
scope.update();
break;
case STATE.TOUCH_DOLLY_PAN:
if (scope.enableZoom === false && scope.enablePan === false) return;
handleTouchMoveDollyPan(event);
scope.update();
break;
case STATE.TOUCH_DOLLY_ROTATE:
if (scope.enableZoom === false && scope.enableRotate === false) return;
handleTouchMoveDollyRotate(event);
scope.update();
break;
default:
state = STATE.NONE;
}
}
function onTouchEnd(event) {
if (scope.enabled === false) return;
handleTouchEnd(event);
scope.dispatchEvent(endEvent);
state = STATE.NONE;
}
function onContextMenu(event) {
if (scope.enabled === false) return;
event.preventDefault();
}
//
scope.domElement.addEventListener('contextmenu', onContextMenu, false);
scope.domElement.addEventListener('mousedown', onMouseDown, false);
scope.domElement.addEventListener('wheel', onMouseWheel, false);
scope.domElement.addEventListener('touchstart', onTouchStart, false);
scope.domElement.addEventListener('touchend', onTouchEnd, false);
scope.domElement.addEventListener('touchmove', onTouchMove, false);
scope.domElement.addEventListener('keydown', onKeyDown, false);
// make sure element can receive keys.
if (scope.domElement.tabIndex === -1) {
scope.domElement.tabIndex = 0;
}
// force an update at start
this.update();
};
OrbitControls.prototype = Object.create(EventDispatcher.prototype);
OrbitControls.prototype.constructor = OrbitControls;
// This set of controls performs orbiting, dollying (zooming), and panning.
// Unlike TrackballControls, it maintains the "up" direction object.up ( Y by default).
// This is very similar to OrbitControls, another set of touch behavior
//
// Orbit - right mouse, or left mouse ctrl/meta/shiftKey / touch: two-finger rotate
// Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
// Pan - left mouse, or arrow keys / touch: one-finger move
var MapControls = function (object, domElement) {
OrbitControls.call(this, object, domElement);
this.mouseButtons.LEFT = MOUSE.PAN;
this.mouseButtons.RIGHT = MOUSE.ROTATE;
this.touches.ONE = TOUCH.PAN;
this.touches.TWO = TOUCH.DOLLY_ROTATE;
};
MapControls.prototype = Object.create(EventDispatcher.prototype);
MapControls.prototype.constructor = MapControls;
return {
OrbitControls,
MapControls
}
}
export default registerOrbit
三、效果图
四、总结 three.js画一个图形主要经历如下八个步骤:
1.创建透视相机2.创建场景3.创建光源4.构造辅助网格5.创建加载器,加载模型文件6.创建渲染器,渲染场景7.创建控制器8.循环渲染场景