最近想对OpenCV进行系统学习,看到网上这份教程写得不错,于是跟着来学习实践一下。 【youcans@qq.com, youcans 的 OpenCV 例程, https://youcans.blog.csdn.net/article/details/125112487】 程序仓库:https://github.com/zstar1003/OpenCV-Learning
色彩转换
颜色空间转换
常见的色彩空间包括:GRAY 色彩空间(灰度图像)、XYZ 色彩空间、YCrCb 色彩空间、HSV 色彩空间、HLS 色彩空间、CIELab 色彩空间、CIELuv 色彩空间、Bayer 色彩空间等。
色彩空间名词解释:
- RGB:红色(Red)、绿色(Green)、蓝色(Blue);
- HSV/HSB:色调(Hue)、饱和度(Saturation)和明度(Value/Brightness);
- HSl:色调(Hue)、饱和度(Saturation)和灰度(Intensity);
- HSL:包括色调(Hue)、饱和度(Saturation)和亮度(Luminance/Lightness)
常见色彩空间转换,这里只列举两个常见的。
- RGB -> GRAY 注意RGB可以转灰度,灰度不能转RGB 转换公式:gray = 0.299 x R 0.587 x G 0.114 x B
- RGB -> HSV RGB转HSV公式为
OpenCV提供了函数cv.cvtColor()
可以将图像从一个颜色空间转换为另一个颜色空间。
cv.cvtColor(src, code [, dst, dstCn]]) → dst
参数说明:
- src:输入图像,nparray 多维数组,8位无符号/ 16位无符号/单精度浮点数格式
- code:颜色空间转换代码,详见 ColorConversionCodes
- dst:输出图像,大小和深度与 src 相同
- dstCn:输出图像的通道数,0 表示由src和code自动计算
示例程序:
代码语言:javascript复制"""
颜色空间转换
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
imgBGR = cv.imread("../img/img.jpg", flags=1)
imgRGB = cv.cvtColor(imgBGR, cv.COLOR_BGR2RGB) # BGR 转换为 RGB, 用于 PyQt5, matplotlib
imgGRAY = cv.cvtColor(imgBGR, cv.COLOR_BGR2GRAY) # BGR 转换为灰度图像
imgHSV = cv.cvtColor(imgBGR, cv.COLOR_BGR2HSV) # BGR 转换为 HSV 图像
imgYCrCb = cv.cvtColor(imgBGR, cv.COLOR_BGR2YCrCb) # BGR转YCrCb
imgHLS = cv.cvtColor(imgBGR, cv.COLOR_BGR2HLS) # BGR 转 HLS 图像
imgXYZ = cv.cvtColor(imgBGR, cv.COLOR_BGR2XYZ) # BGR 转 XYZ 图像
imgLAB = cv.cvtColor(imgBGR, cv.COLOR_BGR2LAB) # BGR 转 LAB 图像
imgYUV = cv.cvtColor(imgBGR, cv.COLOR_BGR2YUV) # BGR 转 YUV 图像
# 调用matplotlib显示处理结果
titles = ['BGR', 'RGB', 'GRAY', 'HSV', 'YCrCb', 'HLS', 'XYZ', 'LAB', 'YUV']
images = [imgBGR, imgRGB, imgGRAY, imgHSV, imgYCrCb,
imgHLS, imgXYZ, imgLAB, imgYUV]
plt.figure(figsize=(10, 8))
for i in range(9):
plt.subplot(3, 3, i 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
颜色反转
图像颜色反转也称为反色变换,是像素颜色的逆转,将黑色像素点变白色,白色像素点变黑色,像素位置不变。 RGB图片实现颜色反转非常容易,一种简单的思路就是对每个像素点用255-颜色值。但是这样处理的效率不高。
OpenCV提供了一个查表函数cv.LUT
可以快速实现像素值的改变。其本质就是先对每个0-255的像素灰度值建立一个变换字典,这样处理像素值就只需要从字典里去查找对应的数据进行替换,而无需再去运算。
下面的示例程序比较了两种方法的执行效率。
代码语言:javascript复制"""
图像颜色反转
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = cv.imread("../img/img.jpg", flags=1)
h, w, ch = img.shape # 图片的高度, 宽度 和通道数
timeBegin = cv.getTickCount()
imgInv = np.empty((w, h, ch), np.uint8) # 创建空白数组
for i in range(h):
for j in range(w):
for k in range(ch):
imgInv[i][j][k] = 255 - img[i][j][k]
timeEnd = cv.getTickCount()
time = (timeEnd - timeBegin) / cv.getTickFrequency()
print("图像反转(for 循环实现): {} s".format(round(time, 4)))
timeBegin = cv.getTickCount()
transTable = np.array([(255 - i) for i in range(256)]).astype("uint8")
invLUT = cv.LUT(img, transTable)
timeEnd = cv.getTickCount()
time = (timeEnd - timeBegin) / cv.getTickFrequency()
print("图像反转(LUT 查表实现): {} s".format(round(time, 4)))
plt.figure(figsize=(9, 6))
plt.subplot(131), plt.title("img"), plt.axis('off')
plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.subplot(132), plt.title("imgInv"), plt.axis('off')
plt.imshow(cv.cvtColor(imgInv, cv.COLOR_BGR2RGB))
plt.subplot(133), plt.title("invLUT"), plt.axis('off')
plt.imshow(cv.cvtColor(invLUT, cv.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
输出
图像反转(for 循环实现): 1.9181 s 图像反转(LUT 查表实现): 0.0326 s
由此可见两者速度差异还是比较明显的。
色彩风格滤镜
色彩风格滤镜就是OpenCV提供了一些色彩搭配方案,通过函数cv.applyColorMap
可以进行调用。
OpenCV 提供了 22 种色彩风格类型:
代码语言:javascript复制ColorMaps[] = {
"Autumn", "Bone", "Jet", "Winter", "Rainbow", "Ocean", "Summer", "Spring",
"Cool", "HSV", "Pink", "Hot", "Parula", "Magma", "Inferno", "Plasma", "Viridis",
"Cividis", "Twilight", "Twilight Shifted", "Turbo", "Deep Green"};
示例程序:
代码语言:javascript复制"""
色彩风格滤镜
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = cv.imread("../img/img.jpg", flags=1)
# 伪彩色处理
pseudo1 = cv.applyColorMap(img, colormap=cv.COLORMAP_PINK)
pseudo2 = cv.applyColorMap(img, colormap=cv.COLORMAP_JET)
pseudo3 = cv.applyColorMap(img, colormap=cv.COLORMAP_WINTER)
pseudo4 = cv.applyColorMap(img, colormap=cv.COLORMAP_RAINBOW)
pseudo5 = cv.applyColorMap(img, colormap=cv.COLORMAP_HOT)
plt.figure(figsize=(9, 6))
plt.subplot(231), plt.axis('off'), plt.title("Origin")
plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.subplot(232), plt.axis('off'), plt.title("cv.COLORMAP_PINK")
plt.imshow(cv.cvtColor(pseudo1, cv.COLOR_BGR2RGB))
plt.subplot(233), plt.axis('off'), plt.title("cv.COLORMAP_JET")
plt.imshow(cv.cvtColor(pseudo2, cv.COLOR_BGR2RGB))
plt.subplot(234), plt.axis('off'), plt.title("cv.COLORMAP_WINTER")
plt.imshow(cv.cvtColor(pseudo3, cv.COLOR_BGR2RGB))
plt.subplot(235), plt.axis('off'), plt.title("cv.COLORMAP_RAINBOW")
plt.imshow(cv.cvtColor(pseudo4, cv.COLOR_BGR2RGB))
plt.subplot(236), plt.axis('off'), plt.title("cv.COLORMAP_HOT")
plt.imshow(cv.cvtColor(pseudo5, cv.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
调节色彩
通过cv.LUT
可以在RGB色彩范围内调节三通道的数值,从而调节色彩。
下面的示例程序将各通道的最大值设置为maxG,将某颜色通道的色阶从 0-255 映射到 0-maxG,就可以使该颜色通道的色彩衰减。
示例程序:
代码语言:javascript复制"""
调节色彩
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = cv.imread("../img/img.jpg", flags=1)
maxG = 128 # 修改颜色通道最大值,0<=maxG<=255
lutHalf = np.array([int(i * maxG / 255) for i in range(256)]).astype("uint8")
lutEqual = np.array([i for i in range(256)]).astype("uint8")
lut3HalfB = np.dstack((lutHalf, lutEqual, lutEqual)) # (1,256,3), B_half/BGR
lut3HalfG = np.dstack((lutEqual, lutHalf, lutEqual)) # (1,256,3), G_half/BGR
lut3HalfR = np.dstack((lutEqual, lutEqual, lutHalf)) # (1,256,3), R_half/BGR
blendHalfB = cv.LUT(img, lut3HalfB) # B 通道衰减 50%
blendHalfG = cv.LUT(img, lut3HalfG) # G 通道衰减 50%
blendHalfR = cv.LUT(img, lut3HalfR) # R 通道衰减 50%
plt.figure(figsize=(9, 5))
plt.subplot(131), plt.axis('off'), plt.title("B half decayed")
plt.imshow(cv.cvtColor(blendHalfB, cv.COLOR_BGR2RGB))
plt.subplot(132), plt.axis('off'), plt.title("G half decayed")
plt.imshow(cv.cvtColor(blendHalfG, cv.COLOR_BGR2RGB))
plt.subplot(133), plt.axis('off'), plt.title("R half decayed")
plt.imshow(cv.cvtColor(blendHalfR, cv.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
调节饱和度和明度
将RGB颜色空间转换到HSV空间,可以调整图片的饱和度和明度。
示例程序:
代码语言:javascript复制"""
调节饱和度和明度
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = cv.imread("../img/img.jpg", flags=1)
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) # 色彩空间转换, BGR->HSV
# 调节通道强度
lutWeaken = np.array([int(0.6 * i) for i in range(256)]).astype("uint8")
lutEqual = np.array([i for i in range(256)]).astype("uint8")
lutRaisen = np.array([int(102 0.6 * i) for i in range(256)]).astype("uint8")
# 调节饱和度
lutSWeaken = np.dstack((lutEqual, lutWeaken, lutEqual)) # Saturation weaken
lutSRaisen = np.dstack((lutEqual, lutRaisen, lutEqual)) # Saturation raisen
# 调节明度
lutVWeaken = np.dstack((lutEqual, lutEqual, lutWeaken)) # Value weaken
lutVRaisen = np.dstack((lutEqual, lutEqual, lutRaisen)) # Value raisen
blendSWeaken = cv.LUT(hsv, lutSWeaken) # 饱和度降低
blendSRaisen = cv.LUT(hsv, lutSRaisen) # 饱和度增大
blendVWeaken = cv.LUT(hsv, lutVWeaken) # 明度降低
blendVRaisen = cv.LUT(hsv, lutVRaisen) # 明度升高
plt.figure(figsize=(9, 6))
plt.subplot(231), plt.axis('off'), plt.title("Saturation weaken")
plt.imshow(cv.cvtColor(blendSWeaken, cv.COLOR_HSV2RGB))
plt.subplot(232), plt.axis('off'), plt.title("Normal saturation")
plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.subplot(233), plt.axis('off'), plt.title("Saturation raisen")
plt.imshow(cv.cvtColor(blendSRaisen, cv.COLOR_HSV2RGB))
plt.subplot(234), plt.axis('off'), plt.title("Value weaken")
plt.imshow(cv.cvtColor(blendVWeaken, cv.COLOR_HSV2RGB))
plt.subplot(235), plt.axis('off'), plt.title("Normal value")
plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.subplot(236), plt.axis('off'), plt.title("Value raisen")
plt.imshow(cv.cvtColor(blendVRaisen, cv.COLOR_HSV2RGB))
plt.tight_layout()
plt.show()
图像绘制
绘制直线
函数cv.line()
绘制图像中点pt1与点pt2之间的线段
函数cv.arrowedLine()
绘制图像中点pt1与点pt2之间的带箭头线段
cv.line(img, pt1, pt2, color[, thickness=1, lineType=LINE_8, shift=0]) → img cv.arrowedLine(img, pt1, pt2, color[, thickness=1, line_type=8, shift=0, tipLength=0.1]) → img
参数说明:
- img:输入输出图像,允许单通道灰度图像或多通道彩色图像
- pt1:线段第一个点的坐标,(x1, y1)
- pt2:线段第二个点的坐标,(x2, y2)
- tipLength:箭头部分长度与线段长度的比例,默认为 0.1
示例程序:
代码语言:javascript复制"""
绘制直线
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
height, width, channels = 200, 120, 3
img = np.ones((height, width, channels), np.uint8) * 160 # 创建黑色图像 RGB=0
# 注意 pt1, pt2 坐标的格式是 (x,y) 而不是 (y,x)
img1 = img.copy()
cv.line(img1, (0, 0), (200, 150), (0, 0, 255), 1) # 红色 R=255
cv.line(img1, (0, 0), (150, 200), (0, 255, 0), 1) # 绿色 G=255
cv.line(img1, (0, 50), (200, 50), (128, 0, 0), 2) # 深蓝色 B = 128
cv.line(img1, (0, 100), (200, 100), 128, 2) # color=128 等效于 (128,0,0)
cv.line(img1, (0, 150), (200, 150), 255, 2) # color=255 等效于 (255,0,0)
# img2 = img.copy()
# tipLength 指箭头部分长度与整个线段长度的比例
img2 = cv.arrowedLine(img.copy(), (10, 0), (100, 30), (0, 0, 255), tipLength=0.05) # 从 pt1 指向 pt2
img2 = cv.arrowedLine(img2, (10, 50), (100, 80), (0, 0, 255), tipLength=0.1)
img2 = cv.arrowedLine(img2, (10, 100), (100, 130), (0, 0, 255), tipLength=0.2) # 双向箭头
img2 = cv.arrowedLine(img2, (100, 130), (10, 100), (0, 0, 255), tipLength=0.2) # 双向箭头
img2 = cv.arrowedLine(img2, (10, 150), (200, 200), (0, 0, 255), tipLength=0.1) # 终点越界,箭头不显示
# 绘制直线可以用于灰度图像,参数 color 只有第一通道值有效,并被设为灰度值
gray = np.zeros((height, width), np.uint8) # 创建灰度图像
img3 = cv.line(gray, (0, 10), (200, 10), (0, 255, 255), 2)
img3 = cv.line(gray, (0, 30), (200, 30), (64, 128, 255), 2)
img3 = cv.line(gray, (0, 60), (200, 60), (128, 64, 255), 2)
img3 = cv.line(gray, (0, 100), (200, 100), (255, 0, 255), 2)
img3 = cv.line(gray, (20, 0), (20, 200), 128, 2)
img3 = cv.line(gray, (60, 0), (60, 200), (255, 0, 0), 2)
img3 = cv.line(gray, (100, 0), (100, 200), (255, 255, 255), 2)
plt.figure(figsize=(9, 6))
plt.subplot(131), plt.title("img1"), plt.axis('off')
plt.imshow(cv.cvtColor(img1, cv.COLOR_BGR2RGB))
plt.subplot(132), plt.title("img2"), plt.axis('off')
plt.imshow(cv.cvtColor(img2, cv.COLOR_BGR2RGB))
plt.subplot(133), plt.title("img3"), plt.axis('off')
plt.imshow(img3, cmap="gray")
plt.tight_layout()
plt.show()
绘制矩形
函数cv.rectangle()
用来在图像上绘制垂直于图像边界的矩形
cv.rectangle(img, pt1, pt2, color[, thickness=1, lineType=LINE_8, shift=0]) → img cv.rectangle(img, rec, color[, thickness=1, lineType=LINE_8, shift=0]) → img
参数说明:
- img:输入输出图像,允许单通道灰度图像或多通道彩色图像
- pt1:矩阵第一个点的坐标,(x1, y1) 格式的元组
- pt2:与 pt1 成对角的矩阵第二个点的坐标,(x2, y2) 格式的元组
- color:绘图线条的颜色,(b,g,r) 格式的元组,或者表示灰度值的标量
- thickness:绘制矩形的线宽,默认值 1px,负数表示矩形内部填充
- lineType:绘制线段的线性,默认为 LINE_8
- shift:点坐标的小数位数,默认为 0
"""
绘制矩形
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
height, width, channels = 400, 300, 3
img = np.ones((height, width, channels), np.uint8) * 160 # 创建黑色图像 RGB=0
img1 = img.copy()
cv.rectangle(img1, (0, 20), (100, 200), (255, 255, 255)) # 白色
cv.rectangle(img1, (20, 0), (300, 100), (255, 0, 0), 2) # 蓝色 B=255
cv.rectangle(img1, (300, 400), (250, 300), (0, 255, 0), -1) # 绿色,填充
cv.rectangle(img1, (0, 400), (50, 300), 255, -1) # color=255 蓝色
cv.rectangle(img1, (20, 220), (25, 225), (0, 0, 255), 4) # 线宽的影响
cv.rectangle(img1, (60, 220), (67, 227), (0, 0, 255), 4)
cv.rectangle(img1, (100, 220), (109, 229), (0, 0, 255), 4)
img2 = img.copy()
x, y, w, h = (50, 50, 200, 100) # 左上角坐标 (x,y), 宽度 w,高度 h
cv.rectangle(img2, (x, y), (x w, y h), (0, 0, 255), 2)
text = "({},{}),{}*{}".format(x, y, w, h)
cv.putText(img2, text, (x, y - 5), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# 绘制直线可以用于灰度图像,参数 color 只有第一通道值有效,并被设为灰度值
gray = np.zeros((height, width), np.uint8) # 创建灰度图像
img3 = cv.line(gray, (0, 10), (300, 10), 64, 2)
cv.line(img3, (0, 30), (300, 30), (128, 128, 255), 2)
cv.line(img3, (0, 60), (300, 60), (192, 64, 255), 2)
cv.rectangle(img3, (0, 200), (30, 150), 128, -1) # Gray=128
cv.rectangle(img3, (60, 200), (90, 150), (128, 0, 0), -1) # Gray=128
cv.rectangle(img3, (120, 200), (150, 150), (128, 255, 255), -1) # Gray=128
cv.rectangle(img3, (180, 200), (210, 150), 192, -1) # Gray=192
cv.rectangle(img3, (240, 200), (270, 150), 255, -1) # Gray=255
plt.figure(figsize=(9, 6))
plt.subplot(131), plt.title("img1"), plt.axis('off')
plt.imshow(cv.cvtColor(img1, cv.COLOR_BGR2RGB))
plt.subplot(132), plt.title("img2"), plt.axis('off')
plt.imshow(cv.cvtColor(img2, cv.COLOR_BGR2RGB))
plt.subplot(133), plt.title("img3"), plt.axis('off')
plt.imshow(img3, cmap="gray")
plt.tight_layout()
plt.show()
绘制倾斜矩形
cv.rectangle()
只能绘制垂直的矩形,如果需要绘制倾斜矩形,需要绘制多条直线。
示例程序:
代码语言:javascript复制"""
绘制倾斜矩形
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
height, width, channels = 600, 400, 3
img = np.ones((height, width, channels), np.uint8) * 192 # 创建黑色图像 RGB=0
# 围绕矩形中心旋转
x, y, w, h = (100, 200, 200, 100) # 左上角坐标 (x,y), 宽度 w,高度 h
cx, cy = x w // 2, y h // 2 # 矩形中心
img1 = img.copy()
cv.circle(img1, (cx, cy), 4, (0, 0, 255), -1) # 旋转中心
angle = [15, 30, 45, 60, 75, 90] # 旋转角度,顺时针方向
for i in range(len(angle)):
ang = angle[i] * np.pi / 180
x1 = int(cx (w / 2) * np.cos(ang) - (h / 2) * np.sin(ang))
y1 = int(cy (w / 2) * np.sin(ang) (h / 2) * np.cos(ang))
x2 = int(cx (w / 2) * np.cos(ang) (h / 2) * np.sin(ang))
y2 = int(cy (w / 2) * np.sin(ang) - (h / 2) * np.cos(ang))
x3 = int(cx - (w / 2) * np.cos(ang) (h / 2) * np.sin(ang))
y3 = int(cy - (w / 2) * np.sin(ang) - (h / 2) * np.cos(ang))
x4 = int(cx - (w / 2) * np.cos(ang) - (h / 2) * np.sin(ang))
y4 = int(cy - (w / 2) * np.sin(ang) (h / 2) * np.cos(ang))
color = (30 * i, 0, 255 - 30 * i)
cv.line(img1, (x1, y1), (x2, y2), color)
cv.line(img1, (x2, y2), (x3, y3), color)
cv.line(img1, (x3, y3), (x4, y4), color)
cv.line(img1, (x4, y4), (x1, y1), color)
# 围绕矩形左上顶点旋转
x, y, w, h = (200, 200, 200, 100) # 左上角坐标 (x,y), 宽度 w,高度 h
img2 = img.copy()
cv.circle(img2, (x, y), 4, (0, 0, 255), -1) # 旋转中心
angle = [15, 30, 45, 60, 75, 90, 120, 150, 180, 225] # 旋转角度,顺时针方向
for i in range(len(angle)):
ang = angle[i] * np.pi / 180
x1, y1 = x, y
x2 = int(x w * np.cos(ang))
y2 = int(y w * np.sin(ang))
x3 = int(x w * np.cos(ang) - h * np.sin(ang))
y3 = int(y w * np.sin(ang) h * np.cos(ang))
x4 = int(x - h * np.sin(ang))
y4 = int(y h * np.cos(ang))
color = (30 * i, 0, 255 - 30 * i)
cv.line(img2, (x1, y1), (x2, y2), color)
cv.line(img2, (x2, y2), (x3, y3), color)
cv.line(img2, (x3, y3), (x4, y4), color)
cv.line(img2, (x4, y4), (x1, y1), color)
plt.figure(figsize=(9, 6))
plt.subplot(121), plt.title("img1"), plt.axis('off')
plt.imshow(cv.cvtColor(img1, cv.COLOR_BGR2RGB))
plt.subplot(122), plt.title("img2"), plt.axis('off')
plt.imshow(cv.cvtColor(img2, cv.COLOR_BGR2RGB))
plt.show()
绘制圆形
函数cv.circle()
用来在图像上绘制圆形
cv.circle(img, center, radius, color[, thickness=1, lineType=LINE_8, shift=0]) → img
参数说明:
- img:输入输出图像,允许单通道灰度图像或多通道彩色图像
- center:圆心点的坐标,(x, y) 格式的元组
- radius:圆的半径,整数
- color:绘图线条的颜色,(b,g,r) 格式的元组,或者表示灰度值的标量
- thickness:绘制矩形的线宽,默认值 1px,负数表示矩形内部填充
- lineType:绘制线段的线性,默认为 LINE_8
- cv.LINE_4:4 邻接线型
- cv.LINE_8:8 邻接线型
- cv.LINE_AA:抗锯齿线型,图像更平滑
- shift:点坐标的小数位数,默认为 0
示例程序:
代码语言:javascript复制"""
绘制圆形
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = np.ones((400, 600, 3), np.uint8) * 192
center = (0, 0) # 圆心坐标
cx, cy = 300, 200 # 圆心坐标
for r in range(200, 0, -20):
color = (r, r, 255 - r)
cv.circle(img, (cx, cy), r, color, -1)
cv.circle(img, center, r, 255)
cv.circle(img, (600, 400), r, color, 5)
plt.figure(figsize=(6, 4))
plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.axis('off')
plt.show()
绘制椭圆
函数cv.ellipse()
用来在图像上绘制椭圆轮廓、填充椭圆、椭圆弧或填充椭圆扇区
cv.ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness=1, lineType=LINE_8, shift=0]) → img cv.ellipse(img, box, color[, thickness=1, lineType=LINE_8]) → img
参数说明:
- img:输入输出图像,允许单通道灰度图像或多通道彩色图像
- center:椭圆中心点的坐标,(x, y) 格式的元组
- axes:椭圆半轴长度,(hfirst, hsecond) 格式的元组
- angle: 椭圆沿 x轴方向的旋转角度(角度制,顺时针方向)
- startAngle:绘制的起始角度
- endAngle:绘制的终止角度
- color:绘图线条的颜色,(b,g,r) 格式的元组,或者表示灰度值的标量
- thickness:绘制矩形的线宽,默认值 1px,负数表示矩形内部填充
- lineType:绘制线段的线性,默认为 LINE_8
- shift:点坐标的小数位数,默认为 0
示例程序:
代码语言:javascript复制"""
绘制椭圆
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = np.ones((600, 400, 3), np.uint8) * 224
img1 = img.copy()
img2 = img.copy()
# (1) 半轴长度 (haf) 的影响
cx, cy = 200, 150 # 圆心坐标
angle = 30 # 旋转角度
startAng, endAng = 0, 360 # 开始角度,结束角度
haf = [50, 100, 150, 180] # 第一轴的半轴长度
has = 100 # 第二轴的半轴长度
for i in range(len(haf)):
color = (i * 50, i * 50, 255 - i * 50)
cv.ellipse(img1, (cx, cy), (haf[i], has), angle, startAng, endAng, color, 2)
angPi = angle * np.pi / 180 # 转换为弧度制,便于计算坐标
xe = int(cx haf[i] * np.cos(angPi))
ye = int(cy haf[i] * np.sin(angPi))
cv.circle(img1, (xe, ye), 2, color, -1)
cv.arrowedLine(img1, (cx, cy), (xe, ye), color) # 从圆心指向第一轴端点
text = "haF={}".format(haf[i])
cv.putText(img1, text, (xe 5, ye), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
# 绘制第二轴
xe = int(cx has * np.sin(angPi)) # 计算第二轴端点坐标
ye = int(cy - has * np.cos(angPi))
cv.arrowedLine(img1, (cx, cy), (xe, ye), color) # 从圆心指向第二轴端点
text = "haS={}".format(has)
cv.putText(img1, text, (xe 5, ye), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
# (2) 旋转角度 (angle) 的影响
cx, cy = 200, 450 # 圆心坐标
haf, has = 120, 50 # 半轴长度
startAng, endAng = 0, 360 # 开始角度,结束角度
angle = [0, 30, 60, 135] # 旋转角度
for i in range(len(angle)):
color = (i * 50, i * 50, 255 - i * 50)
cv.ellipse(img1, (cx, cy), (haf, has), angle[i], startAng, endAng, color, 2)
angPi = angle[i] * np.pi / 180 # 转换为弧度制,便于计算坐标
xe = int(cx haf * np.cos(angPi))
ye = int(cy haf * np.sin(angPi))
cv.circle(img1, (xe, ye), 2, color, -1)
cv.arrowedLine(img1, (cx, cy), (xe, ye), color) # 从圆心指向第一轴端点
text = "rotate {}".format(angle[i])
cv.putText(img1, text, (xe 5, ye), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
# (3) 起始角度 (startAngle) 的影响 I
cx, cy = 50, 80 # 圆心坐标
haf, has = 40, 30 # 半轴长度
angle = 0 # 旋转角度
endAng = 360 # 结束角度
startAng = [0, 45, 90, 180] # 开始角度
for i in range(len(startAng)):
color = (i * 20, i * 20, 255 - i * 20)
cxi = cx i * 100
cv.ellipse(img2, (cxi, cy), (haf, has), angle, startAng[i], endAng, color, 2)
angPi = angle * np.pi / 180 # 转换为弧度制,便于计算坐标
xe = int(cxi haf * np.cos(angPi))
ye = int(cy haf * np.sin(angPi))
cv.arrowedLine(img2, (cxi, cy), (xe, ye), 255) # 从圆心指向第一轴端点
text = "start {}".format(startAng[i])
cv.putText(img2, text, (cxi - 40, cy), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
text = "end={}".format(endAng)
cv.putText(img2, text, (10, cy - 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, 255)
# (4) 起始角度 (startAngle) 的影响 II
cx, cy = 50, 200 # 圆心坐标
haf, has = 40, 30 # 半轴长度
angle = 30 # 旋转角度
endAng = 360 # 结束角度
startAng = [0, 45, 90, 180] # 开始角度
for i in range(len(startAng)):
color = (i * 20, i * 20, 255 - i * 20)
cxi = cx i * 100
cv.ellipse(img2, (cxi, cy), (haf, has), angle, startAng[i], endAng, color, 2)
angPi = angle * np.pi / 180 # 转换为弧度制,便于计算坐标
xe = int(cxi haf * np.cos(angPi))
ye = int(cy haf * np.sin(angPi))
cv.arrowedLine(img2, (cxi, cy), (xe, ye), 255) # 从圆心指向第一轴端点
text = "start {}".format(startAng[i])
cv.putText(img2, text, (cxi - 40, cy), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
text = "end={}".format(endAng)
cv.putText(img2, text, (10, cy - 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, 255)
# (5) 结束角度 (endAngle) 的影响 I
cx, cy = 50, 320 # 圆心坐标
haf, has = 40, 30 # 半轴长度
angle = 0 # 旋转角度
startAng = 0 # 开始角度
endAng = [45, 90, 180, 360] # 结束角度
for i in range(len(endAng)):
color = (i * 20, i * 20, 255 - i * 20)
cxi = cx i * 100
cv.ellipse(img2, (cxi, cy), (haf, has), angle, startAng, endAng[i], color, 2)
angPi = angle * np.pi / 180 # 转换为弧度制,便于计算坐标
xe = int(cxi haf * np.cos(angPi))
ye = int(cy haf * np.sin(angPi))
cv.arrowedLine(img2, (cxi, cy), (xe, ye), 255) # 从圆心指向第一轴端点
text = "end {}".format(endAng[i])
cv.putText(img2, text, (cxi - 40, cy), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
text = "start={}".format(startAng)
cv.putText(img2, text, (10, cy - 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, 255)
# (6) 结束角度 (endAngle) 的影响 II
cx, cy = 50, 420 # 圆心坐标
haf, has = 40, 30 # 半轴长度
angle = 30 # 旋转角度
startAng = 45 # 开始角度
endAng = [30, 90, 180, 360] # 结束角度
for i in range(len(endAng)):
color = (i * 20, i * 20, 255 - i * 20)
cxi = cx i * 100
cv.ellipse(img2, (cxi, cy), (haf, has), angle, startAng, endAng[i], color, 2)
angPi = angle * np.pi / 180 # 转换为弧度制,便于计算坐标
xe = int(cxi haf * np.cos(angPi))
ye = int(cy haf * np.sin(angPi))
cv.arrowedLine(img2, (cxi, cy), (xe, ye), 255) # 从圆心指向第一轴端点
text = "end {}".format(endAng[i])
cv.putText(img2, text, (cxi - 40, cy), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
text = "start={}".format(startAng)
cv.putText(img2, text, (10, cy - 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, 255)
# (7) 结束角度 (endAngle) 的影响 II
cx, cy = 50, 550 # 圆心坐标
haf, has = 40, 30 # 半轴长度
angle = 30 # 旋转角度
startAng = [0, 0, 180, 180] # 开始角度
endAng = [90, 180, 270, 360] # 结束角度
for i in range(len(endAng)):
color = (i * 20, i * 20, 255 - i * 20)
cxi = cx i * 100
cv.ellipse(img2, (cxi, cy), (haf, has), angle, startAng[i], endAng[i], color, 2)
angPi = angle * np.pi / 180 # 转换为弧度制,便于计算坐标
xe = int(cxi haf * np.cos(angPi))
ye = int(cy haf * np.sin(angPi))
cv.arrowedLine(img2, (cxi, cy), (xe, ye), 255) # 从圆心指向第一轴端点
text = "start {}".format(startAng[i])
cv.putText(img2, text, (cxi - 40, cy - 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
text = "end {}".format(endAng[i])
cv.putText(img2, text, (cxi - 40, cy), cv.FONT_HERSHEY_SIMPLEX, 0.5, color)
text = "rotate={}".format(angle)
cv.putText(img2, text, (10, cy - 50), cv.FONT_HERSHEY_SIMPLEX, 0.5, 255)
plt.figure(figsize=(9, 6))
plt.subplot(121), plt.title("Ellipse1"), plt.axis('off')
plt.imshow(cv.cvtColor(img1, cv.COLOR_BGR2RGB))
plt.subplot(122), plt.title("Ellipse2"), plt.axis('off')
plt.imshow(cv.cvtColor(img2, cv.COLOR_BGR2RGB))
plt.show()
绘制多段线和多边形
函数cv.polylines()
用来绘制多边形曲线或多段线
函数cv.fillPoly()
用来绘制一个或多个填充的多边形区域
函数cv.fillConvexPoly()
用来绘制一个填充的凸多边形
cv.polylines(img, pts, isClosed, color[, thickness=1, lineType=LINE_8, shift=0]) → img cv.fillPoly(img, pts, color[, lineType=LINE_8, shift=0, offset=Point()]) → img cv.fillConvexPoly(img, points, color[, lineType=LINE_8, shift=0]) → img
参数说明:
- img:输入输出图像,允许单通道灰度图像或多通道彩色图像
- pts:多边形顶点坐标, 二维 Numpy 数组的列表
- points:多边形顶点坐标,二维 Numpy 数组
- isClosed: 闭合标志,True 表示闭合多边形,False 表示多边形不闭合
示例程序:
代码语言:javascript复制"""
绘制多段线和多边形
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = np.ones((980, 400, 3), np.uint8) * 224
img1 = img.copy()
img2 = img.copy()
img3 = img.copy()
img4 = img.copy()
# 多边形顶点
points1 = np.array([[200, 100], [295, 169], [259, 281], [141, 281], [105, 169]], np.int)
points2 = np.array([[200, 400], [259, 581], [105, 469], [295, 469], [141, 581]]) # (5,2)
points3 = np.array([[200, 700], [222, 769], [295, 769], [236, 812], [259, 881],
[200, 838], [141, 881], [164, 812], [105, 769], [178, 769]])
# 绘制多边形,闭合曲线
pts1 = [points1] # pts1 是列表,列表元素是形状为 (m,2) 的 numpy 二维数组
cv.polylines(img1, pts1, True, (0, 0, 255)) # pts1 是列表
cv.polylines(img1, [points2, points3], 1, 255, 2) # 可以绘制多个多边形
# 绘制多段线,曲线不闭合
cv.polylines(img2, [points1], False, (0, 0, 255))
cv.polylines(img2, [points2, points3], 0, 255, 2) # 可以绘制多个多段线
# 绘制填充多边形,注意交叉重叠部分处理
cv.fillPoly(img3, [points1], (0, 0, 255))
cv.fillPoly(img3, [points2, points3], 255) # 可以绘制多个填充多边形
# 绘制一个填充多边形,注意交叉重叠部分
cv.fillConvexPoly(img4, points1, (0, 0, 255))
cv.fillConvexPoly(img4, points2, 255) # 不能绘制存在自相交的多边形
cv.fillConvexPoly(img4, points3, 255) # 可以绘制凹多边形,但要慎用
plt.figure(figsize=(9, 6))
plt.subplot(141), plt.title("closed polygon"), plt.axis('off')
plt.imshow(cv.cvtColor(img1, cv.COLOR_BGR2RGB))
plt.subplot(142), plt.title("unclosed polygo"), plt.axis('off')
plt.imshow(cv.cvtColor(img2, cv.COLOR_BGR2RGB))
plt.subplot(143), plt.title("fillPoly"), plt.axis('off')
plt.imshow(cv.cvtColor(img3, cv.COLOR_BGR2RGB))
plt.subplot(144), plt.title("fillConvexPoly"), plt.axis('off')
plt.imshow(cv.cvtColor(img4, cv.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
添加水印
添加水印的思路是先在黑色背景上添加图像或文字制作水印,再使用cv.addWeight
函数,通过重叠混合把水印添加到原始图像上。
示例程序:
代码语言:javascript复制"""
添加水印
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = cv.imread("../img/lena.jpg", 1) # 加载原始图片
h, w = img.shape[0], img.shape[1]
# 生成水印图案
logo = cv.imread("../img/img.jpg", 0) # 加载 Logo
logoResize = cv.resize(logo, (200, 200)) # 调整图片尺寸
grayMark = np.zeros(img.shape[:2], np.uint8) # 水印黑色背景
grayMark[10:210, 10:210] = logoResize # 生成水印图案
# 生成文字水印
mark = np.zeros(img.shape[:2], np.uint8) # 黑色背景
for i in range(h // 100):
cv.putText(mark, "zstar", (50, 70 100 * i), cv.FONT_HERSHEY_SIMPLEX, 1.5, 255, 2)
MAR = cv.getRotationMatrix2D((w // 2, h // 2), 45, 1.0) # 旋转 45 度
grayMark2 = cv.warpAffine(mark, MAR, (w, h)) # 旋转变换,默认为黑色填充
# 添加图片水印
markC3 = cv.merge([grayMark, grayMark, grayMark])
imgMark1 = cv.addWeighted(img, 1, markC3, 0.25, 0) # 加权加法图像融合
# 添加文字水印
markC32 = cv.merge([grayMark2, grayMark2, grayMark2])
imgMark2 = cv.addWeighted(img, 1, markC32, 0.25, 0) # 加权加法图像融合
plt.figure(figsize=(9, 6))
plt.subplot(221), plt.title("original"), plt.axis('off')
plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.subplot(222), plt.title("watermark"), plt.axis('off')
plt.imshow(cv.cvtColor(markC3, cv.COLOR_BGR2RGB))
plt.subplot(223), plt.title("watermark embedded"), plt.axis('off')
plt.imshow(cv.cvtColor(imgMark1, cv.COLOR_BGR2RGB))
plt.subplot(224), plt.title("watermark embedded"), plt.axis('off')
plt.imshow(cv.cvtColor(imgMark2, cv.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
添加马赛克
实现马赛克的原理就是将处理区域划分为一个个小方块,每个小方块内所有像素置为相同的或相似的像素值。
示例程序:
代码语言:javascript复制"""
添加马赛克
"""
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = cv.imread("../img/lena.jpg", 1) # 加载原始图片
roi = cv.selectROI(img, showCrosshair=True, fromCenter=False)
x, y, wRoi, hRoi = roi # 矩形裁剪区域的位置参数
# x, y, wRoi, hRoi = 208, 176, 155, 215 # 矩形裁剪区域
imgROI = img[y:y hRoi, x:x wRoi].copy() # 切片获得矩形裁剪区域
plt.figure(figsize=(9, 6))
plt.subplot(231), plt.title("Original image"), plt.axis('off')
plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.subplot(232), plt.title("Region of interest"), plt.axis('off')
plt.imshow(cv.cvtColor(imgROI, cv.COLOR_BGR2RGB))
mosaic = np.zeros(imgROI.shape, np.uint8) # ROI 区域
ksize = [5, 10, 20] # 马赛克块的宽度
for i in range(3):
k = ksize[i]
for h in range(0, hRoi, k):
for w in range(0, wRoi, k):
color = imgROI[h, w]
mosaic[h:h k, w:w k, :] = color # 用顶点颜色覆盖马赛克块
imgMosaic = img.copy()
imgMosaic[y:y hRoi, x:x wRoi] = mosaic
plt.subplot(2, 3, i 4), plt.title("Coding image (size={})".format(k)), plt.axis('off')
plt.imshow(cv.cvtColor(imgMosaic, cv.COLOR_BGR2RGB))
plt.subplot(233), plt.title("Mosaic"), plt.axis('off')
plt.imshow(cv.cvtColor(mosaic, cv.COLOR_BGR2RGB))
plt.show()
趣味应用
下面这个是迷途小书童的Note编写的,通过调整色调和色相,可以将图片变成赛博朋克风格。
完整代码:
代码语言:javascript复制"""
Title:赛博朋克特效实现
Author:迷途小书童的Note
Link:https://mp.weixin.qq.com/s/brZSanGvqqi6AHT3wg54Lg
"""
import cv2
import numpy as np
def modify_color_temperature(img):
# ---------------- 冷色調 ---------------- #
# 1.计算三个通道的平均值,并依据平均值调整色调
imgB = img[:, :, 0]
imgG = img[:, :, 1]
imgR = img[:, :, 2]
# 调整色调 # 白平衡 -> 三个值变化相同
# 冷色调(增加b分量) -> 除了b之外都增加
# 暖色调(增加r分量) -> 除了r之外都增加
bAve = cv2.mean(imgB)[0]
gAve = cv2.mean(imgG)[0] 10
rAve = cv2.mean(imgR)[0] 10
aveGray = (int)(bAve gAve rAve) / 3
# 2. 计算各通道增益系数,并使用此系数计算結果
bCoef = aveGray / bAve
gCoef = aveGray / gAve
rCoef = aveGray / rAve
imgB = np.floor((imgB * bCoef)) # 向下取整
imgG = np.floor((imgG * gCoef))
imgR = np.floor((imgR * rCoef))
# 3. 变换后处理
imgb = imgB
imgb[imgb > 255] = 255
imgg = imgG
imgg[imgg > 255] = 255
imgr = imgR
imgr[imgr > 255] = 255
cold_rgb = np.dstack((imgb, imgg, imgr)).astype(np.uint8)
return cold_rgb
def reverse_hue(image):
# 反转色相
image_hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
image_hls = np.asarray(image_hls, np.float32)
hue = image_hls[:, :, 0]
hue[hue < 90] = 180 - hue[hue < 90] - 10
image_hls[:, :, 0] = hue
image_hls = np.asarray(image_hls, np.uint8)
image = cv2.cvtColor(image_hls, cv2.COLOR_HLS2BGR)
return image
def cyberpunk(image):
image_lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
image_lab = np.asarray(image_lab, np.float32)
image_lab[:,:,0] = np.clip(image_lab[:,:,0] * 1.2,0,255)
# 提高像素亮度,让亮的地方更亮
light_gamma_high = np.power(image_lab[:, :, 0], 0.9)
light_gamma_high = np.asarray(light_gamma_high / np.max(light_gamma_high) * 255, np.uint)
# 降低像素亮度,让暗的地方更暗
light_gamma_low = np.power(image_lab[:, :, 0], 1.1)
light_gamma_low = np.asarray(light_gamma_low / np.max(light_gamma_low) * 255, np.uint8)
# 调色至偏紫
dark_b = image_lab[:, :, 2] * (light_gamma_low / 255) * 0.4
dark_a = image_lab[:, :, 2] * (1 - light_gamma_high / 255) * 0.1
image_lab[:, :, 2] = np.clip(image_lab[:, :, 2] - dark_b, 0, 255)
image_lab[:, :, 1] = np.clip(image_lab[:, :, 1] - dark_a, 0, 255)
image_lab = np.asarray(image_lab, np.uint8)
return cv2.cvtColor(image_lab, cv2.COLOR_Lab2BGR)
if __name__ == "__main__":
# 设置窗口可缩放
cv2.namedWindow('origin', cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
cv2.namedWindow('cold_style', cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
cv2.namedWindow('reverser_hue', cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
cv2.namedWindow('cyberpunk', cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
image = cv2.imread("../img/img.jpg")
cv2.imshow("origin", image)
image = modify_color_temperature(image)
cv2.imshow("cold_style", image)
image = reverse_hue(image)
cv2.imshow("reverser_hue", image)
# cv2.waitKey()
image = cyberpunk(image)
cv2.imshow("cyberpunk", image)
cv2.imwrite("result2.jpg", image)
cv2.waitKey()