RocketMQ消息存储

2022-09-29 10:35:13 浏览数 (1)

消息存储

1、何时存储消息

分布式队列因为有高可靠性的要求,所以数据要进行持久化存储。

MQ收到一条消息后,需要向生产者返回一个ACK响应,并将消息存储起来。

MQ Push一条消息给消费者后,等待消费者的ACK响应,需要将消息标记为已消费。如果没有标记为消费,MQ会不断的尝试往消费者推送这条消息。

MQ需要定期删除一些过期的消息,这样才能保证服务一直可用。

2、消息存储介质

RocketMQ采用的是类似于Kafka的文件存储机制,即直接用磁盘文件来保存消息,而不需要借助MySQL这一类索引工具。

2.1磁盘保存文件慢吗?

磁盘如果使用得当,磁盘的速度完全可以匹配上网络的数据传输速度。目前的高性能磁盘,顺序写速度可以达到600MB/s, 超过了一般网卡的传输速度。但是磁盘随机写的速度只有大概100KB/s,和顺序写的性能相差6000倍!因为有如此巨大的速度差别,好的消息队列系统会比普通的消息队列系统速度快多个数量级。RocketMQ的消息用顺序写,保证了消息存储的速度。

2.2零拷贝技术加速文件读写

Linux操作系统分为【用户态】和【内核态】,文件操作、网络操作需要涉及这两种形态的切换,免不了进行数据复制。

一台服务器 把本机磁盘文件的内容发送到客户端,一般分为两个步骤:

1)read;读取本地文件内容;

2)write;将读取的内容通过网络发送出去。

这两个看似简单的操作,实际进行了4 次数据复制,分别是:

从磁盘复制数据到内核态内存;

从内核态内存复 制到用户态内存;

然后从用户态 内存复制到网络驱动的内核态内存;

最后是从网络驱动的内核态内存复 制到网卡中进行传输。

而通过使用mmap的方式,可以省去向用户态的内存复制,提高速度。这种机制在Java中是通过NIO包中的MappedByteBuffer实现的。RocketMQ充分利用了上述特性,也就是所谓的“零拷贝”技术,提高消息存盘和网络发送的速度。

这里需要注意的是,采用MappedByteBuffer这种内存映射的方式有几个限制,其中之一是一次只能映射1.5~2G 的文件至用户态的虚拟内存,这也是为何RocketMQ默认设置单个CommitLog日志数据文件为1G的原因了

关于零拷贝,JAVA的NIO中提供了两种实现方式,mmap和sendfile,其中mmap适合比较小的文件,而sendfile适合传递比较大的文件。

3 消息存储结构

RocketMQ消息的存储分为三个部分:

CommitLog:存储消息的元数据。所有消息都会顺序存入到CommitLog文件当中。CommitLog由多个文件组成,每个文件固定大小1G。以第一条消息的偏移量为文件名。

ConsumerQueue:存储消息在CommitLog的索引。一个MessageQueue一个文件,记录当前MessageQueue被哪些消费者组消费到了哪一条CommitLog。

IndexFile:为了消息查询提供了一种通过key或时间区间来查询消息的方法,这种通过IndexFile来查找消息的方法不影响发送与消费消息的主流程

整体的消息存储结构如下图:

消息存储结构

还记得我们在搭建集群时都特意指定的文件存储路径吗?现在可以上去看看这些文件都是什么样子。还有哪些落盘的文件?

另外还有几个文件可以了解下。

abort:这个文件是RocketMQ用来判断程序是否正常关闭的一个标识文件。正常情况下,会在启动时创建,而关闭服务时删除。但是如果遇到一些服务器宕机,或者kill -9这样一些非正常关闭服务的情况,这个abort文件就不会删除,因此RocketMQ就可以判断上一次服务是非正常关闭的,后续就会做一些数据恢复的操作。

checkpoint:数据存盘检查点

config/*.json:这些文件是将RocketMQ的一些关键配置信息进行存盘保存。例如Topic配置、消费者组配置、消费者组消息偏移量Offset 等等一些信息。

4 刷盘机制

RocketMQ需要将消息存储到磁盘上,这样才能保证断电后消息不会丢失。同时这样才可以让存储的消息量可以超出内存的限制。RocketMQ为了提高性能,会尽量保证磁盘的顺序写。消息在写入磁盘时,有两种写磁盘的方式,同步刷盘和异步刷盘

同步刷盘和异步刷盘

同步刷盘:

在返回写成功状态时,消息已经被写入磁盘。具体流程是,消息写入内存的PAGECACHE后,立刻通知刷盘线程刷盘, 然后等待刷盘完成,刷盘线程执行完成后唤醒等待的线程,返回消息写 成功的状态。

异步刷盘:

在返回写成功状态时,消息可能只是被写入了内存的PAGECACHE,写操作的返回快,吞吐量大;当内存里的消息量积累到一定程度时,统一触发写磁盘动作,快速写入。

配置方式:

刷盘方式是通过Broker配置文件里的flushDiskType 参数设置的,这个参数被配置成SYNC_FLUSH、ASYNC_FLUSH中的 一个。

5 消息主从复制

如果Broker以一个集群的方式部署,会有一个master节点和多个slave节点,消息需要从Master复制到Slave上。而消息复制的方式分为同步复制和异步复制。

同步复制

同步复制是等Master和Slave都写入消息成功后才反馈给客户端写入成功的状态。

在同步复制下,如果Master节点故障,Slave上有全部的数据备份,这样容易恢复数据。但是同步复制会增大数据写入的延迟,降低系统的吞吐量。

异步复制

异步复制是只要master写入消息成功,就反馈给客户端写入成功的状态。然后再异步的将消息复制给Slave节点。

在异步复制下,系统拥有较低的延迟和较高的吞吐量。但是如果master节点故障,而有些数据没有完成复制,就会造成数据丢失。

配置方式:

消息复制方式是通过Broker配置文件里的brokerRole参数进行设置的,这个参数可以被设置成ASYNC_MASTER、 SYNC_MASTER、SLAVE三个值中的一个。

6 负载均衡
6.1Producer负载均衡

Producer发送消息时,默认会轮询目标Topic下的所有MessageQueue,并采用递增取模的方式往不同的MessageQueue上发送消息,以达到让消息平均落在不同的queue上的目的。而由于MessageQueue是分布在不同的Broker上的,所以消息也会发送到不同的broker上。

发送者队列轮询

同时生产者在发送消息时,可以指定一个MessageQueueSelector。通过这个对象来将消息发送到自己指定的MessageQueue上。这样可以保证消息局部有序。

6.2 Consumer负载均衡

Consumer也是以MessageQueue为单位来进行负载均衡。分为集群模式和广播模式。

1、集群模式

在集群消费模式下,每条消息只需要投递到订阅这个topic的Consumer Group下的一个实例即可。RocketMQ采用主动拉取的方式拉取并消费消息,在拉取的时候需要明确指定拉取哪一条message queue。

而每当实例的数量有变更,都会触发一次所有实例的负载均衡,这时候会按照queue的数量和实例的数量平均分配queue给每个实例。

每次分配时,都会将MessageQueue和消费者ID进行排序后,再用不同的分配算法进行分配。内置的分配的算法共有六种,分别对应AllocateMessageQueueStrategy下的六种实现类,可以在consumer中直接set来指定。默认情况下使用的是最简单的平均分配策略。

AllocateMachineRoomNearby: 将同机房的Consumer和Broker优先分配在一起。

这个策略可以通过一个machineRoomResolver对象来定制Consumer和Broker的机房解析规则。然后还需要引入另外一个分配策略来对同机房的Broker和Consumer进行分配。一般也就用简单的平均分配策略或者轮询分配策略。

感觉这东西挺鸡肋的,直接给个属性指定机房不是挺好的吗。

源码中有测试代码AllocateMachineRoomNearByTest。

在示例中:Broker的机房指定方式: messageQueue.getBrokerName().split("-")[0],而Consumer的机房指定方式:clientID.split("-")[0]

clinetID的构建方式:见ClientConfig.buildMQClientId方法。按他的测试代码应该是要把clientIP指定为IDC1-CID-0这样的形式。

AllocateMessageQueueAveragely:平均分配。将所有MessageQueue平均分给每一个消费者

AllocateMessageQueueAveragelyByCircle: 轮询分配。轮流的给一个消费者分配一个MessageQueue。

AllocateMessageQueueByConfig: 不分配,直接指定一个messageQueue列表。类似于广播模式,直接指定所有队列。

AllocateMessageQueueByMachineRoom:按逻辑机房的概念进行分配。又是对BrokerName和ConsumerIdc有定制化的配置。

AllocateMessageQueueConsistentHash。源码中有测试代码AllocateMessageQueueConsitentHashTest。这个一致性哈希策略只需要指定一个虚拟节点数,是用的一个哈希环的算法,虚拟节点是为了让Hash数据在换上分布更为均匀。

例如平均分配时的分配情况是这样的:Consumer平均分配

2、广播模式

广播模式下,每一条消息都会投递给订阅了Topic的所有消费者实例,所以也就没有消息分配这一说。而在实现上,就是在Consumer分配Queue时,所有Consumer都分到所有的Queue。

7、消息重试

首先对于广播模式的消息, 是不存在消息重试的机制的,即消息消费失败后,不会再重新进行发送,而只是继续消费新的消息。

而对于普通的消息,当消费者消费消息失败后,你可以通过设置返回状态达到消息重试的结果。

1、如何让消息进行重试

集群消费方式下,消息消费失败后期望消息重试,需要在消息监听器接口的实现中明确进行配置。可以有三种配置方式:

返回Action.ReconsumeLater-推荐

返回null

抛出异常

代码语言:javascript复制
public class MessageListenerImpl implements MessageListener {
    @Override
    public Action consume(Message message, ConsumeContext context) {
        //处理消息
        doConsumeMessage(message);
        //方式1:返回 Action.ReconsumeLater,消息将重试
        return Action.ReconsumeLater;
        //方式2:返回 null,消息将重试
        return null;
        //方式3:直接抛出异常, 消息将重试
        throw new RuntimeException("Consumer Message exceotion");
    }
}

如果希望消费失败后不重试,可以直接返回Action.CommitMessage。

代码语言:javascript复制
public class MessageListenerImpl implements MessageListener {
    @Override
    public Action consume(Message message, ConsumeContext context) {
        try {
            doConsumeMessage(message);
        } catch (Throwable e) {
            //捕获消费逻辑中的所有异常,并返回 Action.CommitMessage;
            return Action.CommitMessage;
        }
        //消息处理正常,直接返回 Action.CommitMessage;
        return Action.CommitMessage;
    }
}

2、重试消息如何处理

重试的消息会进入一个 “%RETRY%” ConsumeGroup 的队列中。

RocketMQ消息重试

然后RocketMQ默认允许每条消息最多重试16次,每次重试的间隔时间如下:

这个重试时间跟延迟消息的延迟级别是对应的。不过取的是延迟级别的后16级别。

messageDelayLevel=1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h

这个重试时间可以将源码中的org.apache.rocketmq.example.quickstart.Consumer里的消息监听器返回状态改为RECONSUME_LATER测试一下。

重试次数:

如果消息重试16次后仍然失败,消息将不再投递。转为进入死信队列。

另外一条消息无论重试多少次,这些重试消息的MessageId始终都是一样的。

然后关于这个重试次数,RocketMQ可以进行定制。例如通过consumer.setMaxReconsumeTimes(20);将重试次数设定为20次。当定制的重试次数超过16次后,消息的重试时间间隔均为2小时。

关于MessageId:

在老版本的RocketMQ中,一条消息无论重试多少次,这些重试消息的MessageId始终都是一样的。

但是在4.7.1版本中,每次重试MessageId都会重建。

配置覆盖:

消息最大重试次数的设置对相同GroupID下的所有Consumer实例有效。并且最后启动的Consumer会覆盖之前启动的Consumer的配置。

8、死信队列

当一条消息消费失败,RocketMQ就会自动进行消息重试。而如果消息超过最大重试次数,RocketMQ就会认为这个消息有问题。但是此时,RocketMQ不会立刻将这个有问题的消息丢弃,而会将其发送到这个消费者组对应的一种特殊队列:死信队列。

死信队列的名称是%DLQ% ConsumGroup

RocketMQ死信队列

死信队列的特征:

一个死信队列对应一个ConsumGroup,而不是对应某个消费者实例。

如果一个ConsumeGroup没有产生死信队列,RocketMQ就不会为其创建相应的死信队列。

一个死信队列包含了这个ConsumeGroup里的所有死信消息,而不区分该消息属于哪个Topic。

死信队列中的消息不会再被消费者正常消费。

死信队列的有效期跟正常消息相同。默认3天,对应broker.conf中的fileReservedTime属性。超过这个最长时间的消息都会被删除,而不管消息是否消费过。

通常,一条消息进入了死信队列,意味着消息在消费处理的过程中出现了比较严重的错误,并且无法自行恢复。此时,一般需要人工去查看死信队列中的消息,对错误原因进行排查。然后对死信消息进行处理,比如转发到正常的Topic重新进行消费,或者丢弃。

注:默认创建出来的死信队列,他里面的消息是无法读取的,在控制台和消费者中都无法读取。这是因为这些默认的死信队列,他们的权限perm被设置成了2:禁读(这个权限有三种 2:禁读,4:禁写,6:可读可写)。需要手动将死信队列的权限配置成6,才能被消费(可以通过mqadmin指定或者web控制台)。

9、消息幂等
1、幂等的概念

在MQ系统中,对于消息幂等有三种实现语义:

at most once 最多一次:每条消息最多只会被消费一次

at least once 至少一次:每条消息至少会被消费一次

exactly once 刚刚好一次:每条消息都只会确定的消费一次

这三种语义都有他适用的业务场景。

其中,at most once是最好保证的。RocketMQ中可以直接用异步发送、sendOneWay等方式就可以保证。

而at least once这个语义,RocketMQ也有同步发送、事务消息等很多方式能够保证。

而这个exactly once是MQ中最理想也是最难保证的一种语义,需要有非常精细的设计才行。RocketMQ只能保证at least once,保证不了exactly once。所以,使用RocketMQ时,需要由业务系统自行保证消息的幂等性。

关于这个问题,官网上有明确的回答: 4. Are messages delivered exactly once?

RocketMQ ensures that all messages are delivered at least once. In most cases, the messages are not repeated

2、消息幂等的必要性

在互联网应用中,尤其在网络不稳定的情况下,消息队列 RocketMQ 的消息有可能会出现重复,这个重复简单可以概括为以下情况:

发送时消息重复

当一条消息已被成功发送到服务端并完成持久化,此时出现了网络闪断或者客户端宕机,导致服务端对客户端应答失败。 如果此时生产者意识到消息发送失败并尝试再次发送消息,消费者后续会收到两条内容相同并且 Message ID 也相同的消息。

投递时消息重复

消息消费的场景下,消息已投递到消费者并完成业务处理,当客户端给服务端反馈应答的时候网络闪断。 为了保证消息至少被消费一次,消息队列 RocketMQ 的服务端将在网络恢复后再次尝试投递之前已被处理过的消息,消费者后续会收到两条内容相同并且 Message ID 也相同的消息。

负载均衡时消息重复(包括但不限于网络抖动、Broker 重启以及订阅方应用重启)

当消息队列 RocketMQ 的 Broker 或客户端重启、扩容或缩容时,会触发 Rebalance,此时消费者可能会收到重复消息。

3、处理方式

从上面的分析中,我们知道,在RocketMQ中,是无法保证每个消息只被投递一次的,所以要在业务上自行来保证消息消费的幂等性。

而要处理这个问题,RocketMQ的每条消息都有一个唯一的MessageId,这个参数在多次投递的过程中是不会改变的,所以业务上可以用这个MessageId来作为判断幂等的关键依据。

但是,这个MessageId是无法保证全局唯一的,也会有冲突的情况。所以在一些对幂等性要求严格的场景,最好是使用业务上唯一的一个标识比较靠谱。例如订单ID。而这个业务标识可以使用Message的Key来进行传递。

0 人点赞