ElasticSearch

2022-09-29 14:11:50 浏览数 (3)

1.ElasticSearch简介

1.1 ElasticSearch(简称ES)

Elasticsearch是用Java开发并且是当前最流行的开源的企业级搜索引擎。能够达到实时搜索,稳定,可靠,快速,安装使用方便。客户端支持Java、.NET(C#)、PHP、Python、Ruby等多种语言。

官方网站: https://www.elastic.co/ 下载地址:https://www.elastic.co/cn/start

1.2 ElasticSearch与Lucene的关系

Lucene可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库(框架)但是想要使用Lucene,必须使用Java来作为开发语言并将其直接集成到你的应用中,并且Lucene的配置及使用非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。

Lucene缺点: 1)只能在Java项目中使用,并且要以jar包的方式直接集成项目中. 2)使用非常复杂-创建索引和搜索索引代码繁杂 3)不支持集群环境-索引数据不同步(不支持大型项目) 4)索引数据如果太多就不行,索引库和应用所在同一个服务器,共同占用硬盘.共用空间少.

上述Lucene框架中的缺点,ES全部都能解决.

1.3 哪些公司在使用Elasticsearch

  1. 京东
  2. 携程
  3. 去哪儿
  4. 58同城
  5. 滴滴
  6. 今日头条
  7. 小米
  8. 哔哩哔哩
  9. 联想
  10. GitHup
  11. 微软
  12. Facebook 等等...

1.4 ES vs Solr比较

1.4.1 ES vs Solr 检索速度

当单纯的对已有数据进行搜索时,Solr更快。

当实时建立索引时, Solr会产生io阻塞,查询性能较差, Elasticsearch具有明显的优势。

大型互联网公司,实际生产环境测试,将搜索引擎从Solr转到 Elasticsearch以后的平均查询速度有了50倍的提升。

总结: 二者安装都很简单。 1、Solr 利用 Zookeeper 进行分布式管理,而Elasticsearch 自身带有分布式协调管理功能。 2、Solr 支持更多格式的数据,比如JSON、XML、CSV,而 Elasticsearch 仅支持json文件格式。 3、Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch。 4、Solr 是传统搜索应用的有力解决方案,但 Elasticsearch更适用于新兴的实时搜索应用。

1.4.2 ES vs 关系型数据库

2. Lucene全文检索框架

2.1 什么是全文检索

通过一个程序扫描文本中的每一个单词,针对单词建立索引,并保存该单词在文本中的位置、以及出现的次数。用户查询时,通过之前建立好的索引来查询,将索引中单词对应的文本位置、出现的次数返回给用户,因为有了具体文本的位置,所以就可以将具体内容读取出来了。

2.2 分词原理之倒排索引

倒排索引总结:

索引就类似于目录,平时我们使用的都是索引,都是通过主键定位到某条数据,那么倒排索引呢,刚好相反,数据对应到主键。

以一个博客文章的内容为例: 1.索引

2.倒排索引 假如,我们有一个站内搜索的功能,通过某个关键词来搜索相关的文章,那么这个关键词可能出现在标题中,也可能出现在文章内容中,那我们将会在创建或修改文章的时候,建立一个关键词与文章的对应关系表,这种,我们可以称之为倒排索引,因此倒排索引,也可称之为反向索引。

3. Elasticsearch中的核心概念

3.1 索引 index

一个索引就是一个拥有几分相似特征的文档的集合。比如说,可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。 一个索引由一个名字来标识(必须全部是小写字母的),并且当我们要对对应于这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。

3.2 映射 mapping

ElasticSearch中的映射(Mapping)用来定义一个文档。mapping是处理数据的方式和规则方面做一些限制,如某个字段的数据类型、默认值、分词器、是否被索引等等,这些都是映射里面可以设置的

3.3 字段Field

相当于是数据表的字段|列

3.4 字段类型 Type

每一个字段都应该有一个对应的类型,例如:Text、Keyword、Byte等

3.5 文档 document

一个文档是一个可被索引的基础信息单元,类似一条记录。文档以JSON(Javascript Object Notation)格式来表示;

3.6 集群 cluster

一个集群就是由一个或多个节点组织在一起,它们共同持有整个的数据,并一起提供索引和搜索功能

3.7 节点 node

一个节点是集群中的一个服务器,作为集群的一部分,它存储数据,参与集群的索引和搜索功能。 一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个“elasticsearch”的集群中。在一个集群里,可以拥有任意多个节点。而且,如果当前网络中没有运行任何Elasticsearch节点,这时启动一个节点,会默认创建并加入一个叫做“elasticsearch”的集群。

3.8 分片和副本 shards&replicas

3.8.1 分片

一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。 为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,这些份就叫做分片。 当创建一个索引的时候,可以指定你想要的分片的数量,每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上,分片很重要,主要有两方面的原因:允许水平分割/扩展你的内容容量允许在分片之上进行分布式的、并行的操作,进而提高性能/吞吐量。至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由Elasticsearch管理的,对于作为用户来说,这些都是透明的

3.8.2 副本

在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做副本分片,或者直接叫副本。

副本之所以重要,有两个主要原因

  • 在分片/节点失败的情况下,提供了高可用性。注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。
  • 扩展搜索量/吞吐量,因为搜索可以在所有的副本上并行运行。每个索引可以被分成多个分片。一个索引有0个或者多个副本 一旦设置了副本,每个索引就有了主分片和副本分片,分片和副本的数量可以在索引。创建的时候指定,在索引创建之后,可以在任何时候动态地改变副本的数量,但是不能改变分片的数量。

0 人点赞