Seurat软件学习1-多个模型得数据进行整合

2022-09-29 21:23:24 浏览数 (1)

单细胞数据分析中比较重要得软件seurat应该能排在前几名,我一直没有系统得学习过seurat,所以把官网上得内容进行翻译及学习。

官网链接:https://satijalab.org/seurat/articles/get_started.html

个人觉得官网得学习资源还是很全得,基本包括了目前大家要用得分析内容。

image.pngimage.png

加载数据

从同一细胞同时测量多种数据类型的能力,即所谓的多模式分析,代表了单细胞基因组学的一个新的令人兴奋的前沿。例如,CITE-SEQ能够同时测量同一细胞的转录本和细胞表面蛋白。其他令人兴奋的多模式技术,如10x多组试剂盒,允许对细胞转录组和染色质可及性进行配对测量(即scRNA-seq scATAC-seq)。其他可以与细胞转录本一起测量的模式包括遗传扰动、细胞甲基组和细胞散列的标签寡聚。我们设计的Seurat4能够无缝存储、分析和探索不同的多模式单细胞数据集。

在这里,我们介绍了一个创建多模式Seurat对象并执行初始分析的流程。例如,我们演示了如何基于测量的细胞转录本对CITE-SEQ数据集进行聚类,并随后发现在每个聚类中丰富的细胞表面蛋白。我们注意到,Seurat4还支持更高级的多模式数据分析技术,特别是我们的加权最近邻(WNN)方法的应用,该方法支持基于两种模式的加权组合同时对单元进行聚类,您可以在此处探索此功能。

在这里,我们分析了8,617个脐带血单个核细胞(CBMC)的数据集,其中转录测量与11种表面蛋白的丰度估计相匹配,其水平通过DNA条形码抗体进行量化。

首先,我们加载两个计数矩阵:一个用于RNA测量,另一个用于抗体衍生标签(ADT)。您可以在此处下载ADT文件,在此处下载RNA文件

代码语言:javascript复制
library(Seurat)
library(ggplot2)
library(patchwork)
# Load in the RNA UMI matrix

# Note that this dataset also contains ~5% of mouse cells, which we can use as negative
# controls for the protein measurements. For this reason, the gene expression matrix has
# HUMAN_ or MOUSE_ appended to the beginning of each gene.
cbmc.rna <- as.sparse(read.csv(file = "../data/GSE100866_CBMC_8K_13AB_10X-RNA_umi.csv.gz", sep = ",",
    header = TRUE, row.names = 1))

# To make life a bit easier going forward, we're going to discard all but the top 100 most
# highly expressed mouse genes, and remove the 'HUMAN_' from the CITE-seq prefix
cbmc.rna <- CollapseSpeciesExpressionMatrix(cbmc.rna)

# Load in the ADT UMI matrix
cbmc.adt <- as.sparse(read.csv(file = "../data/GSE100866_CBMC_8K_13AB_10X-ADT_umi.csv.gz", sep = ",",
    header = TRUE, row.names = 1))

# Note that since measurements were made in the same cells, the two matrices have identical
# column names
all.equal(colnames(cbmc.rna), colnames(cbmc.adt))
## [1] TRUE

构建一个Seurat对象,添加RNA和蛋白质数据

现在我们创建一个 Seurat 对象,并添加 ADT 数据作为第二个矩阵中。

构建多个不同得组学得单细胞数据,加入第二个矩阵得方法都是通用得

代码语言:javascript复制
# creates a Seurat object based on the scRNA-seq data
cbmc <- CreateSeuratObject(counts = cbmc.rna)

# We can see that by default, the cbmc object contains an assay storing RNA measurement
Assays(cbmc)
代码语言:javascript复制
## [1] "RNA"
代码语言:javascript复制
# create a new assay to store ADT information
adt_assay <- CreateAssayObject(counts = cbmc.adt)

# add this assay to the previously created Seurat object
cbmc[["ADT"]] <- adt_assay

# Validate that the object now contains multiple assays
Assays(cbmc)
代码语言:javascript复制
## [1] "RNA" "ADT"
代码语言:javascript复制
# Extract a list of features measured in the ADT assay
rownames(cbmc[["ADT"]])
代码语言:javascript复制
##  [1] "CD3"    "CD4"    "CD8"    "CD45RA" "CD56"   "CD16"   "CD10"   "CD11c" 
##  [9] "CD14"   "CD19"   "CD34"   "CCR5"   "CCR7"
代码语言:javascript复制
# Note that we can easily switch back and forth between the two assays to specify the default
# for visualization and analysis

# List the current default assay
##需要对那个矩阵就对哪个矩阵进行default,这样接下来得分析都是围绕着这个组学进行分析
DefaultAssay(cbmc)
代码语言:javascript复制
## [1] "RNA"
代码语言:javascript复制
# Switch the default to ADT
DefaultAssay(cbmc) <- "ADT"
DefaultAssay(cbmc)

## [1] "ADT"
##这样就更改回了蛋白得矩阵

根据细胞的scRNA-seq谱对细胞进行聚类

下面的步骤代表了根据scRNA-seq数据对PBMCs进行快速聚类的方法。关于个别步骤或更多高级选项的更多细节,请看我们的PBMC聚类指导教程。是在前面得一个教程,但是我去年就看过了,所以觉得没有分享得必要,如果没有看过得话,可以去看一下,原文链接:https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

代码语言:javascript复制
# Note that all operations below are performed on the RNA assay Set and verify that the
# default assay is RNA
DefaultAssay(cbmc) <- "RNA"
DefaultAssay(cbmc)
代码语言:javascript复制
## [1] "RNA"
代码语言:javascript复制
# perform visualization and clustering steps
cbmc <- NormalizeData(cbmc)
cbmc <- FindVariableFeatures(cbmc)
cbmc <- ScaleData(cbmc)
cbmc <- RunPCA(cbmc, verbose = FALSE)
cbmc <- FindNeighbors(cbmc, dims = 1:30)
cbmc <- FindClusters(cbmc, resolution = 0.8, verbose = FALSE)
cbmc <- RunUMAP(cbmc, dims = 1:30)
DimPlot(cbmc, label = TRUE)
cluster1-1.pngcluster1-1.png

将多组学数据并列可视化

现在我们已经从scRNA-seq图谱中获得了聚类,我们可以将数据集中的蛋白质或RNA分子的表达可视化。重要的是,Seurat提供了几种在不同模式间切换的方法,并指定你对分析或可视化感兴趣的模式。这一点特别重要,因为在某些情况下,同一个特征可以出现在多个模式中--例如,这个数据集包含B细胞标记物CD19的独立测量(包括蛋白质和RNA水平)。

代码语言:javascript复制
# Normalize ADT data,
DefaultAssay(cbmc) <- "ADT"
cbmc <- NormalizeData(cbmc, normalization.method = "CLR", margin = 2)
DefaultAssay(cbmc) <- "RNA"

# Note that the following command is an alternative but returns the same result
cbmc <- NormalizeData(cbmc, normalization.method = "CLR", margin = 2, assay = "ADT")

# Now, we will visualize CD14 levels for RNA and protein By setting the default assay, we can
# visualize one or the other
DefaultAssay(cbmc) <- "ADT"
p1 <- FeaturePlot(cbmc, "CD19", cols = c("lightgrey", "darkgreen"))   ggtitle("CD19 protein")
DefaultAssay(cbmc) <- "RNA"
p2 <- FeaturePlot(cbmc, "CD19")   ggtitle("CD19 RNA")

# place plots side-by-side
p1 | p2
vis-1.pngvis-1.png
代码语言:javascript复制
# Alternately, we can use specific assay keys to specify a specific modality Identify the key
# for the RNA and protein assays
Key(cbmc[["RNA"]])
## [1] "rna_"
Key(cbmc[["ADT"]])
## [1] "adt_"
# Now, we can include the key in the feature name, which overrides the default assay
p1 <- FeaturePlot(cbmc, "adt_CD19", cols = c("lightgrey", "darkgreen"))   ggtitle("CD19 protein")
p2 <- FeaturePlot(cbmc, "rna_CD19")   ggtitle("CD19 RNA")
p1 | p2
vis-2.pngvis-2.png

识别scRNA-seq集群的细胞表面标志物

我们可以利用我们整合的CITE-seq结果来帮助注释从scRNA-seq得出的集群,并确定蛋白质和RNA标记物。

注意:这里是在前面进行细胞marker分析之前,已经做好了细胞注释。

代码语言:javascript复制
# as we know that CD19 is a B cell marker, we can identify cluster 6 as expressing CD19 on the
# surface
VlnPlot(cbmc, "adt_CD19")
markers-1.pngmarkers-1.png
代码语言:javascript复制
# we can also identify alternative protein and RNA markers for this cluster through
# differential expression
adt_markers <- FindMarkers(cbmc, ident.1 = 6, assay = "ADT")
rna_markers <- FindMarkers(cbmc, ident.1 = 6, assay = "RNA")

head(adt_markers)
##                p_val avg_log2FC pct.1 pct.2     p_val_adj
## CD19   2.067533e-215  1.2787751     1     1 2.687793e-214
## CD45RA 8.106076e-109  0.4117172     1     1 1.053790e-107
## CD4    1.123162e-107 -0.7255977     1     1 1.460110e-106
## CD14   7.212876e-106 -0.5060496     1     1 9.376739e-105
## CD3     1.639633e-87 -0.6565471     1     1  2.131523e-86
## CD8     1.042859e-17 -0.3001131     1     1  1.355716e-16
head(rna_markers)
##       p_val avg_log2FC pct.1 pct.2 p_val_adj
## BANK1     0   1.963277 0.456 0.015         0
## CD19      0   1.563124 0.351 0.004         0
## CD22      0   1.503809 0.284 0.007         0
## CD79A     0   4.177162 0.965 0.045         0
## CD79B     0   3.774579 0.944 0.089         0
## FCRL1     0   1.188813 0.222 0.002         0

多组学数据的其他可视化方式

代码语言:javascript复制
# Draw ADT scatter plots (like biaxial plots for FACS). Note that you can even 'gate' cells if
# desired by using HoverLocator and FeatureLocator
FeatureScatter(cbmc, feature1 = "adt_CD19", feature2 = "adt_CD3")
viz.cite.two-1.pngviz.cite.two-1.png
代码语言:javascript复制
# view relationship between protein and RNA
FeatureScatter(cbmc, feature1 = "adt_CD3", feature2 = "rna_CD3E")
viz.cite.two-2.pngviz.cite.two-2.png
代码语言:javascript复制
FeatureScatter(cbmc, feature1 = "adt_CD4", feature2 = "adt_CD8")
viz.cite.two-3.pngviz.cite.two-3.png
代码语言:javascript复制
# Let's look at the raw (non-normalized) ADT counts. You can see the values are quite high,
# particularly in comparison to RNA values. This is due to the significantly higher protein
# copy number in cells, which significantly reduces 'drop-out' in ADT data
FeatureScatter(cbmc, feature1 = "adt_CD4", feature2 = "adt_CD8", slot = "counts")
viz.cite.two-4.pngviz.cite.two-4.png

这个散点图比较像流式分析中得圈门,通过标记基因看所处得哪个部分,可以进行大致得倍性分析或者荧光信号得分析。

从10x的多组学实验中加载数据

Seurat还能分析使用CellRanger v3处理的多组学10X实验的数据;作为一个例子,我们使用7,900个外周血单核细胞(PBMC)的数据集重新制作了上面的图,10X基因组学公司在这里免费提供https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_protein_v3。

代码语言:javascript复制
pbmc10k.data <- Read10X(data.dir = "../data/pbmc10k/filtered_feature_bc_matrix/")
rownames(x = pbmc10k.data[["Antibody Capture"]]) <- gsub(pattern = "_[control_]*TotalSeqB", replacement = "",
    x = rownames(x = pbmc10k.data[["Antibody Capture"]]))

pbmc10k <- CreateSeuratObject(counts = pbmc10k.data[["Gene Expression"]], min.cells = 3, min.features = 200)
pbmc10k <- NormalizeData(pbmc10k)
pbmc10k[["ADT"]] <- CreateAssayObject(pbmc10k.data[["Antibody Capture"]][, colnames(x = pbmc10k)])
pbmc10k <- NormalizeData(pbmc10k, assay = "ADT", normalization.method = "CLR")

plot1 <- FeatureScatter(pbmc10k, feature1 = "adt_CD19", feature2 = "adt_CD3", pt.size = 1)
plot2 <- FeatureScatter(pbmc10k, feature1 = "adt_CD4", feature2 = "adt_CD8a", pt.size = 1)
plot3 <- FeatureScatter(pbmc10k, feature1 = "adt_CD3", feature2 = "CD3E", pt.size = 1)
(plot1   plot2   plot3) & NoLegend()
pbmc10x-1.pngpbmc10x-1.png

Seurat 中多组学数据的附加功能

Seurat v4还包括用于分析、可视化和整合多模式数据集的额外功能。欲了解更多信息,请浏览下面的资源https://satijalab.org/seurat/articles/multimodal_vignette.html。

image.pngimage.png

0 人点赞