8. 强化学习之——模仿学习

2022-10-02 13:36:22 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

目录

课程大纲

Introduction & Behavioral Cloning

DAGGER algorithm to improve BC【就是在BC中引入了online iteration,2011】

Inverse RL & GAIL

Inverse RL

GAIL

Connection between IRL & GAIL

改进模仿学习的性能

模仿学习与强化学习结合

(1)最简单直接的结合:预训练和调整 Pretrain and Finetune【应用十分广泛】

(2)IL 结合 Off-Policy RL:算是对 Pretrain and Finetune 的改进

(3)另一种结合方式:把 IL 作为一项辅助的损失函数

一个有趣的 Case Study—— motion imitation

IL 本身存在的问题

总结


课程大纲

模仿学习介绍

行为克隆 BC 和 DAGGER 算法

逆强化学习 IRL 和 生成对抗模仿学习GAIL

改进模仿学习的性能

把模仿学习和强化学习结合

Introduction & Behavioral Cloning

从最简单的行为克隆方法开始介绍:比较简单的思想就是把策略的学习当做有监督的学习来进行,例如学习出来策略网络

这样直接把它当做一个有监督的问题来解决的话其实是有问题的:数据的分布假设相矛盾 —— 有监督学习假设数据是 IID 的,但是一个时序的决策过程采集到的数据是有关联的;而且如果模型进入到 off-course 状态(训练时没见到过的状态)时不知道怎么回来

一个可能的解决方案就是:不断添加数据,变成 online 的过程

DAGGER algorithm to improve BC【就是在BC中引入了online iteration,2011】

DAGGER 的缺点在于第三步实在是太耗费时间了,可以改进 DAGGER 吗?第三步是不是可以用其他的算法来打标签呢?

改进DAGGER:

Inverse RL & GAIL

Inverse RL

IRL 与 RL 的对比:

IRL的举例:

GAIL

类似于 IRL,GAN 学习了一个目标函数用于生成模型,GAIL 模仿了 GAN 的思想

Connection between IRL & GAIL

改进模仿学习的性能

怎样提升我们的策略模型?

问题一:Multimodal behavior

解决方案:

①输出一个多高斯模型,也就是多峰的叠加的形式

②隐变量模型

③自回归离散

问题二:Non-Markovian behavior

解决方案:

①建模整个观测历史,比如说 LSTM

用 LSTM 和 示教数据 完成机械臂抓取的例子【AAAI 2018】

那么其实在机器人领域,如何 scale up 数据一直是一个很大的问题

斯坦福的李飞飞组提出的 crowdsourcing 的方法来采集很多很多很多人的示教数据,RoboTurk项目出了一种解决方案

模仿学习其实还有一些问题

①人为提供数据,这个数据本身就有限

②人有时候不能很好提供数据,例如对无人机示教、对复杂机器人的示教

③人本身是可以在环境中自由探索的,是否可以借鉴这一点呢?

所以下面我们就想把模仿学习与强化学习结合起来

模仿学习与强化学习结合

模仿学习与强化学习的各自的特点对比

怎么把两者结合起来,既有 Demonstration 又有 Rewards?

(1)最简单直接的结合:预训练和调整 Pretrain and Finetune【应用十分广泛】

也就是说用 Demonstration 预训练一个 Policy(解决 exploration 的问题),然后用 RL 去 improve policy 和解决那些 off-policy 的状态,最终达到超过示教者表现的过程

Pretrain and Finetune 的流程如下:

这里是之前的 DAGGER 算法,可以和 Pretrain and Finetune 进行对比:

Pretrain and Finetune 的应用:

①应用于 AlphaGo【Nature 2016 Silver】

②应用于 Starcraft2【DeepMind工作】

Pretrain and Finetune 的问题:

①在第三步的时候我们之前获得的比较好的 Policy 用强化学习来训练的时候,可能会面临分布不一致的问题

②最开始的 experience 可能是很糟糕的,这样在进行训练时会摧毁 policy network

解决Pretrain and Finetune 问题的方案:考虑怎样把 Demonstration 一直保留下来 —— Off-Policy RL

(2)IL 结合 Off-Policy RL:算是对 Pretrain and Finetune 的改进

off-policy RL 可以用任意的 experience data ,例如对Q-Learning来说,只要把它们放到 replay buffer 里面就可以一直用

①形式一:Policy Gradient with Demonstration

应用举例:

②形式二:Q-Learning with Demonstration

(3)另一种结合方式:把 IL 作为一项辅助的损失函数

优化 RL的期望回报 IL的极大似然

应用举例:【2017年】

一个有趣的 Case Study—— motion imitation

可以在实际的人的关节贴传感器采数据,甚至还可以从视频里通过姿态估计来采数据训练agent

详细内容去听周老师的课吧~

IL 本身存在的问题

(1)怎样去收集 Demonstration

① Crowdsourcing

② Guided policy search or optimal control for trajectory optimization

(2)怎样优化 Policy 使得 Agent 能处理 off-course 的状况

① 把这些 off-course 的状况也建模进来,打好标签

② Use off-policy learning with the already collected samples

③ 结合 IL 和 RL

总结

注:本文所有内容源自于B站周博磊老师更新完成的强化学习纲要课程,听完之后获益很多,本文也是分享我的听课笔记。周老师Bilibili视频个人主页:https://space.bilibili.com/511221970?spm_id_from=333.788.b_765f7570696e666f.2

感谢周老师 :)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/192003.html原文链接:https://javaforall.cn

0 人点赞