决策树的原理_决策树特征选择

2022-10-03 09:28:18 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

  • 决策树的原理:根据树结构进行决策,可以用于分类和回归。一颗决策树包括一个根结点、若干个内部节点和若干个叶节点。从根节点出发,对每个特征划分数据集并计算信息增益(或者增益率,基尼系数),选择信息增益最大的特征作为划分特征,依次递归,直至特征划分时信息增益很小或无特征可划分,形成决策树。

决策树

优点

1. 计算复杂度不高; 2. 输出结果易于理解; 3. 不需要数据预处理; 4. 对中间值的缺失不敏感; 5. 可以处理不相关特征数据; 6. 对于异常点的容错率高

缺点

1. 可能产生过拟合的现象; 2. 对于比较复杂的关系很难学习; 3. 样本发生一点点变化会导致树的结构剧烈变动

  • 决策树的算法:ID3算法、C4.5算法、CART算法

算法

优缺点

ID3算法

不足: 无法处理连续特征;信息增益使得算法偏向于取值较多的特征;没有考虑缺失值和过拟合的问题。

C4.5算法

优点: 可以处理连续特征,引入增益率校正信息增益,考虑了数据缺失和过拟合的问题;不足: 剪枝方法有优化空间,生成的多叉树运算效率不高,大量对数运算和排序运算很耗时,只能用于分类不能回归。

CART算法

优点: 解决了C4.5算法的不足,可分类可回归;不足: 树的结构会由于样本的小变化发生剧烈变动,特征选择时都是选择最优的一个特征来做分类决策。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/197767.html原文链接:https://javaforall.cn

0 人点赞