BP人工神经网络matlab工具箱_matlab神经网络控制

2022-10-03 17:18:35 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

自己测试人口预测的matlab实现:

x=[54167

55196

56300

57482

58796

60266

61465

62828

64653

65994

67207

66207

65859

67295

69172

70499

72538

74542

76368

78534

80671

82992

85229

87177

89211

90859

92420

93717

94974

96259

97542

98705

100072

101654

103008

104357

105851

107507

109300

111026

112704

114333

115823

117171

118517

119850

121121

122389

123626

124761

125786

126743

127627

128453

129227

129988

130756

131448

132129

132802

134480

135030

135770

136460

137510]‘;

% 该脚本用来做NAR神经网络预测

lag=3; % 自回归阶数

iinput=x; % x为原始序列(行向量)

n=length(iinput);

%准备输入和输出数据

inputs=zeros(lag,n-lag);

for i=1:n-lag

inputs(:,i)=iinput(i:i lag-1)‘;

end

targets=x(lag 1:end);

%创建网络

hiddenLayerSize = 10; %隐藏层神经元个数

net = fitnet(hiddenLayerSize);

% 避免过拟合,划分训练,测试和验证数据的比例

net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

%训练网络

[net,tr] = train(net,inputs,targets);

%% 根据图表判断拟合好坏

yn=net(inputs);

errors=targets-yn;

figure, ploterrcorr(errors) %绘制误差的自相关情况(20lags)

figure, parcorr(errors) %绘制偏相关情况

%[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)

figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势

figure, ploterrhist(errors) %误差直方图

figure, plotperform(tr) %误差下降线

%% 下面预测往后预测几个时间段

fn=7; %预测步数为fn

f_in=iinput(n-lag 1:end)‘;

f_out=zeros(1,fn); %预测输出

% 多步预测时,用下面的循环将网络输出重新输入

for i=1:fn

f_out(i)=net(f_in);

f_in=[f_in(2:end);f_out(i)];

end

% 画出预测图

figure,plot(1949:2013,iinput,‘b‘,2013:2020,[iinput(end),f_out],‘r‘)

用2014a版matlab运行后结果如下:

网络结构和各参数显示如下:

误差直方图

图1 自相关 图2 误差

图3 预测

注意在对结果好坏的判断中,仅仅看误差图是不够的,如果是一个好的预测,那么自相关性图中除了0阶自相关外,其他的自相关系数系数都不应该超过上下置信区间。还有其他的统计量和图表都都写在”%“后面了,如果需要,去掉就可用。最后的预测值为f_out,我的预测值为

138701.065269972 139467.632609654 140207.209707364 141210.109373609 141981.285378849 142461.332139592 143056.073139776

时间: 06-13

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/197165.html原文链接:https://javaforall.cn

0 人点赞