js手写前端需要掌握的点

2022-10-24 13:05:00 浏览数 (1)

throttle(节流)

高频时间触发,但n秒内只会执行一次,所以节流会稀释函数的执行频率。

代码语言:javascript复制
const throttle = (fn, time) => {
  let flag = true;
  return function() {
    if (!flag) return;
    flag = false;
    setTimeout(() => {
      fn.apply(this, arguments);
      flag = true;
    }, time);
  }
}

节流常应用于鼠标不断点击触发、监听滚动事件。

手写 new 操作符

在调用 new 的过程中会发生以上四件事情:

(1)首先创建了一个新的空对象

(2)设置原型,将对象的原型设置为函数的 prototype 对象。

(3)让函数的 this 指向这个对象,执行构造函数的代码(为这个新对象添加属性)

(4)判断函数的返回值类型,如果是值类型,返回创建的对象。如果是引用类型,就返回这个引用类型的对象。

代码语言:javascript复制
function objectFactory() {
  let newObject = null;
  let constructor = Array.prototype.shift.call(arguments);
  let result = null;
  // 判断参数是否是一个函数
  if (typeof constructor !== "function") {
    console.error("type error");
    return;
  }
  // 新建一个空对象,对象的原型为构造函数的 prototype 对象
  newObject = Object.create(constructor.prototype);
  // 将 this 指向新建对象,并执行函数
  result = constructor.apply(newObject, arguments);
  // 判断返回对象
  let flag = result && (typeof result === "object" || typeof result === "function");
  // 判断返回结果
  return flag ? result : newObject;
}
// 使用方法
objectFactory(构造函数, 初始化参数);

实现数组元素求和

  • arr=1,2,3,4,5,6,7,8,9,10,求和
代码语言:javascript复制
let arr=[1,2,3,4,5,6,7,8,9,10]
let sum = arr.reduce( (total,i) => total  = i,0);
console.log(sum);
  • arr=[1,2,3,[4,5,6],7,8,9],求和
代码语言:javascript复制
var = arr=[1,2,3,[[4,5],6],7,8,9]
let arr= arr.toString().split(',').reduce( (total,i) => total  = Number(i),0);
console.log(arr);

递归实现:

代码语言:javascript复制
let arr = [1, 2, 3, 4, 5, 6] 

function add(arr) {
    if (arr.length == 1) return arr[0] 
    return arr[0]   add(arr.slice(1)) 
}
console.log(add(arr)) // 21

实现Object.is

Object.is不会转换被比较的两个值的类型,这点和===更为相似,他们之间也存在一些区别

  • NaN===中是不相等的,而在Object.is中是相等的
  • 0-0在===中是相等的,而在Object.is中是不相等的
代码语言:javascript复制
Object.is = function (x, y) {
  if (x === y) {
    // 当前情况下,只有一种情况是特殊的,即  0 -0
    // 如果 x !== 0,则返回true
    // 如果 x === 0,则需要判断 0和-0,则可以直接使用 1/ 0 === Infinity 和 1/-0 === -Infinity来进行判断
    return x !== 0 || 1 / x === 1 / y;
  }

  // x !== y 的情况下,只需要判断是否为NaN,如果x!==x,则说明x是NaN,同理y也一样
  // x和y同时为NaN时,返回true
  return x !== x && y !== y;
};

递归反转链表

代码语言:javascript复制
// node节点
class Node {
  constructor(element,next) {
    this.element = element
    this.next = next
  } 
}

class LinkedList {
 constructor() {
   this.head = null // 默认应该指向第一个节点
   this.size = 0 // 通过这个长度可以遍历这个链表
 }
 // 增加O(n)
 add(index,element) {
   if(arguments.length === 1) {
     // 向末尾添加
     element = index // 当前元素等于传递的第一项
     index = this.size // 索引指向最后一个元素
   }
  if(index < 0 || index > this.size) {
    throw new Error('添加的索引不正常')
  }
  if(index === 0) {
    // 直接找到头部 把头部改掉 性能更好
    let head = this.head
    this.head = new Node(element,head)
  } else {
    // 获取当前头指针
    let current = this.head
    // 不停遍历 直到找到最后一项 添加的索引是1就找到第0个的next赋值
    for (let i = 0; i < index-1; i  ) { // 找到它的前一个
      current = current.next
    }
    // 让创建的元素指向上一个元素的下一个
    // 看图理解next层级 ![](http://img-repo.poetries.top/images/20210522115056.png)
    current.next = new Node(element,current.next) // 让当前元素指向下一个元素的next
  }

  this.size  ;
 }
 // 删除O(n)
 remove(index) {
  if(index < 0 || index >= this.size) {
    throw new Error('删除的索引不正常')
  }
  this.size--
  if(index === 0) {
    let head = this.head
    this.head = this.head.next // 移动指针位置

    return head // 返回删除的元素
  }else {
    let current = this.head
    for (let i = 0; i < index-1; i  ) { // index-1找到它的前一个
      current = current.next
    }
    let returnVal = current.next // 返回删除的元素
    // 找到待删除的指针的上一个 current.next.next 
    // 如删除200, 100=>200=>300 找到200的上一个100的next的next为300,把300赋值给100的next即可
    current.next = current.next.next 

    return returnVal
  }
 }
 // 查找O(n)
 get(index) {
  if(index < 0 || index >= this.size) {
    throw new Error('查找的索引不正常')
  }
  let current = this.head
  for (let i = 0; i < index; i  ) {
    current = current.next
  }
  return current
 }
 reverse() {
  const reverse = head=>{
    if(head == null || head.next == null) {
      return head
    }
    let newHead = reverse(head.next)
    // 从这个链表的最后一个开始反转,让当前下一个元素的next指向自己,自己指向null
    // ![](http://img-repo.poetries.top/images/20210522161710.png)
    // 刚开始反转的是最后两个
    head.next.next = head
    head.next = null

    return newHead
  }
  return reverse(this.head)
 }
}

let ll = new LinkedList()

ll.add(1)
ll.add(2)
ll.add(3)
ll.add(4)

// console.dir(ll,{depth: 1000})

console.log(ll.reverse())

实现数组的扁平化

(1)递归实现

普通的递归思路很容易理解,就是通过循环递归的方式,一项一项地去遍历,如果每一项还是一个数组,那么就继续往下遍历,利用递归程序的方法,来实现数组的每一项的连接:

代码语言:javascript复制
let arr = [1, [2, [3, 4, 5]]];
function flatten(arr) {
  let result = [];

  for(let i = 0; i < arr.length; i  ) {
    if(Array.isArray(arr[i])) {
      result = result.concat(flatten(arr[i]));
    } else {
      result.push(arr[i]);
    }
  }
  return result;
}
flatten(arr);  //  [1, 2, 3, 4,5]

(2)reduce 函数迭代

从上面普通的递归函数中可以看出,其实就是对数组的每一项进行处理,那么其实也可以用reduce 来实现数组的拼接,从而简化第一种方法的代码,改造后的代码如下所示:

代码语言:javascript复制
let arr = [1, [2, [3, 4]]];
function flatten(arr) {
    return arr.reduce(function(prev, next){
        return prev.concat(Array.isArray(next) ? flatten(next) : next)
    }, [])
}
console.log(flatten(arr));//  [1, 2, 3, 4,5]

(3)扩展运算符实现

这个方法的实现,采用了扩展运算符和 some 的方法,两者共同使用,达到数组扁平化的目的:

代码语言:javascript复制
let arr = [1, [2, [3, 4]]];
function flatten(arr) {
    while (arr.some(item => Array.isArray(item))) {
        arr = [].concat(...arr);
    }
    return arr;
}
console.log(flatten(arr)); //  [1, 2, 3, 4,5]

(4)split 和 toString

可以通过 split 和 toString 两个方法来共同实现数组扁平化,由于数组会默认带一个 toString 的方法,所以可以把数组直接转换成逗号分隔的字符串,然后再用 split 方法把字符串重新转换为数组,如下面的代码所示:

代码语言:javascript复制
let arr = [1, [2, [3, 4]]];
function flatten(arr) {
    return arr.toString().split(',');
}
console.log(flatten(arr)); //  [1, 2, 3, 4,5]

通过这两个方法可以将多维数组直接转换成逗号连接的字符串,然后再重新分隔成数组。

(5)ES6 中的 flat

我们还可以直接调用 ES6 中的 flat 方法来实现数组扁平化。flat 方法的语法:arr.flat([depth])

其中 depth 是 flat 的参数,depth 是可以传递数组的展开深度(默认不填、数值是 1),即展开一层数组。如果层数不确定,参数可以传进 Infinity,代表不论多少层都要展开:

代码语言:javascript复制
let arr = [1, [2, [3, 4]]];
function flatten(arr) {
  return arr.flat(Infinity);
}
console.log(flatten(arr)); //  [1, 2, 3, 4,5]

可以看出,一个嵌套了两层的数组,通过将 flat 方法的参数设置为 Infinity,达到了我们预期的效果。其实同样也可以设置成 2,也能实现这样的效果。在编程过程中,如果数组的嵌套层数不确定,最好直接使用 Infinity,可以达到扁平化。 (6)正则和 JSON 方法 在第4种方法中已经使用 toString 方法,其中仍然采用了将 JSON.stringify 的方法先转换为字符串,然后通过正则表达式过滤掉字符串中的数组的方括号,最后再利用 JSON.parse 把它转换成数组:

代码语言:javascript复制
let arr = [1, [2, [3, [4, 5]]], 6];
function flatten(arr) {
  let str = JSON.stringify(arr);
  str = str.replace(/([|])/g, '');
  str = '['   str   ']';
  return JSON.parse(str); 
}
console.log(flatten(arr)); //  [1, 2, 3, 4,5]

实现一个compose函数

组合多个函数,从右到左,比如:compose(f, g, h) 最终得到这个结果 (...args) => f(g(h(...args))).

题目描述:实现一个 compose 函数

代码语言:javascript复制
// 用法如下:
function fn1(x) {
  return x   1;
}
function fn2(x) {
  return x   2;
}
function fn3(x) {
  return x   3;
}
function fn4(x) {
  return x   4;
}
const a = compose(fn1, fn2, fn3, fn4);
console.log(a(1)); // 1 4 3 2 1=11

实现代码如下

代码语言:javascript复制
function compose(...funcs) {
  if (!funcs.length) return (v) => v;

  if (funcs.length === 1) {
    return funcs[0]
  }

  return funcs.reduce((a, b) => {
    return (...args) => a(b(...args)))
  }
}

compose创建了一个从右向左执行的数据流。如果要实现从左到右的数据流,可以直接更改compose的部分代码即可实现

  • 更换Api接口:把reduce改为reduceRight
  • 交互包裹位置:把a(b(...args))改为b(a(...args))

数组去重方法汇总

首先:我知道多少种去重方式

1. 双层 for 循环

代码语言:javascript复制
function distinct(arr) {
    for (let i=0, len=arr.length; i<len; i  ) {
        for (let j=i 1; j<len; j  ) {
            if (arr[i] == arr[j]) {
                arr.splice(j, 1);
                // splice 会改变数组长度,所以要将数组长度 len 和下标 j 减一
                len--;
                j--;
            }
        }
    }
    return arr;
}

思想: 双重 for 循环是比较笨拙的方法,它实现的原理很简单:先定义一个包含原始数组第一个元素的数组,然后遍历原始数组,将原始数组中的每个元素与新数组中的每个元素进行比对,如果不重复则添加到新数组中,最后返回新数组;因为它的时间复杂度是O(n^2),如果数组长度很大,效率会很低

2. Array.filter() 加 indexOf/includes

代码语言:javascript复制
function distinct(a, b) {
    let arr = a.concat(b);
    return arr.filter((item, index)=> {
        //return arr.indexOf(item) === index
        return arr.includes(item)
    })
}

思想: 利用indexOf检测元素在数组中第一次出现的位置是否和元素现在的位置相等,如果不等则说明该元素是重复元素

3. ES6 中的 Set 去重

代码语言:javascript复制
function distinct(array) {
   return Array.from(new Set(array));
}

思想: ES6 提供了新的数据结构 Set,Set 结构的一个特性就是成员值都是唯一的,没有重复的值。

4. reduce 实现对象数组去重复

代码语言:javascript复制
var resources = [
    { name: "张三", age: "18" },
    { name: "张三", age: "19" },
    { name: "张三", age: "20" },
    { name: "李四", age: "19" },
    { name: "王五", age: "20" },
    { name: "赵六", age: "21" }
]
var temp = {};
resources = resources.reduce((prev, curv) => {
 // 如果临时对象中有这个名字,什么都不做
 if (temp[curv.name]) {

 }else {
    // 如果临时对象没有就把这个名字加进去,同时把当前的这个对象加入到prev中
    temp[curv.name] = true;
    prev.push(curv);
 }
 return prev
}, []);
console.log("结果", resources);

这种方法是利用高阶函数 reduce 进行去重, 这里只需要注意initialValue得放一个空数组[],不然没法push

实现一个双向绑定

defineProperty 版本

代码语言:javascript复制
// 数据
const data = {
  text: 'default'
};
const input = document.getElementById('input');
const span = document.getElementById('span');
// 数据劫持
Object.defineProperty(data, 'text', {
  // 数据变化 --> 修改视图
  set(newVal) {
    input.value = newVal;
    span.innerHTML = newVal;
  }
});
// 视图更改 --> 数据变化
input.addEventListener('keyup', function(e) {
  data.text = e.target.value;
});

proxy 版本

代码语言:javascript复制
// 数据
const data = {
  text: 'default'
};
const input = document.getElementById('input');
const span = document.getElementById('span');
// 数据劫持
const handler = {
  set(target, key, value) {
    target[key] = value;
    // 数据变化 --> 修改视图
    input.value = value;
    span.innerHTML = value;
    return value;
  }
};
const proxy = new Proxy(data, handler);

// 视图更改 --> 数据变化
input.addEventListener('keyup', function(e) {
  proxy.text = e.target.value;
});

参考:前端手写面试题详细解答

实现Promise相关方法

实现Promise的resolve

实现 resolve 静态方法有三个要点:

  • 传参为一个 Promise, 则直接返回它。
  • 传参为一个 thenable 对象,返回的 Promise 会跟随这个对象,采用它的最终状态作为自己的状态。
  • 其他情况,直接返回以该值为成功状态的promise对象。
代码语言:javascript复制
Promise.resolve = (param) => {
  if(param instanceof Promise) return param;
  return new Promise((resolve, reject) => {
    if(param && param.then && typeof param.then === 'function') {
      // param 状态变为成功会调用resolve,将新 Promise 的状态变为成功,反之亦然
      param.then(resolve, reject);
    }else {
      resolve(param);
    }
  })
}

实现 Promise.reject

Promise.reject 中传入的参数会作为一个 reason 原封不动地往下传, 实现如下:

代码语言:javascript复制
Promise.reject = function (reason) {
    return new Promise((resolve, reject) => {
        reject(reason);
    });
}

实现 Promise.prototype.finally

前面的promise不管成功还是失败,都会走到finally中,并且finally之后,还可以继续then(说明它还是一个then方法是关键),并且会将初始的promise值原封不动的传递给后面的then.

Promise.prototype.finally最大的作用

  • finally里的函数,无论如何都会执行,并会把前面的值原封不动传递给下一个then方法中
  • 如果finally函数中有promise等异步任务,会等它们全部执行完毕,再结合之前的成功与否状态,返回值

Promise.prototype.finally六大情况用法

代码语言:javascript复制
// 情况1
Promise.resolve(123).finally((data) => { // 这里传入的函数,无论如何都会执行
  console.log(data); // undefined
})

// 情况2 (这里,finally方法相当于做了中间处理,起一个过渡的作用)
Promise.resolve(123).finally((data) => {
  console.log(data); // undefined
}).then(data => {
  console.log(data); // 123
})

// 情况3 (这里只要reject,都会走到下一个then的err中)
Promise.reject(123).finally((data) => {
  console.log(data); // undefined
}).then(data => {
  console.log(data);
}, err => {
  console.log(err, 'err'); // 123 err
})

// 情况4 (一开始就成功之后,会等待finally里的promise执行完毕后,再把前面的data传递到下一个then中)
Promise.resolve(123).finally((data) => {
  console.log(data); // undefined
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve('ok');
    }, 3000)
  })
}).then(data => {
  console.log(data, 'success'); // 123 success
}, err => {
  console.log(err, 'err');
})

// 情况5 (虽然一开始成功,但是只要finally函数中的promise失败了,就会把其失败的值传递到下一个then的err中)
Promise.resolve(123).finally((data) => {
  console.log(data); // undefined
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      reject('rejected');
    }, 3000)
  })
}).then(data => {
  console.log(data, 'success');
}, err => {
  console.log(err, 'err'); // rejected err
})

// 情况6 (虽然一开始失败,但是也要等finally中的promise执行完,才能把一开始的err传递到err的回调中)
Promise.reject(123).finally((data) => {
  console.log(data); // undefined
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve('resolve');
    }, 3000)
  })
}).then(data => {
  console.log(data, 'success');
}, err => {
  console.log(err, 'err'); // 123 err
})

源码实现

代码语言:javascript复制
Promise.prototype.finally = function (callback) {
  return this.then((data) => {
    // 让函数执行 内部会调用方法,如果方法是promise,需要等待它完成
    // 如果当前promise执行时失败了,会把err传递到,err的回调函数中
    return Promise.resolve(callback()).then(() => data); // data 上一个promise的成功态
  }, err => {
    return Promise.resolve(callback()).then(() => {
      throw err; // 把之前的失败的err,抛出去
    });
  })
}

实现 Promise.all

对于 all 方法而言,需要完成下面的核心功能:

  • 传入参数为一个空的可迭代对象,则直接进行resolve
  • 如果参数中有一个promise失败,那么Promise.all返回的promise对象失败。
  • 在任何情况下,Promise.all 返回的 promise 的完成状态的结果都是一个数组
代码语言:javascript复制
Promise.all = function(promises) {
  return new Promise((resolve, reject) => {
    let result = [];
    let index = 0;
    let len = promises.length;
    if(len === 0) {
      resolve(result);
      return;
    }

    for(let i = 0; i < len; i  ) {
      // 为什么不直接 promise[i].then, 因为promise[i]可能不是一个promise
      Promise.resolve(promise[i]).then(data => {
        result[i] = data;
        index  ;
        if(index === len) resolve(result);
      }).catch(err => {
        reject(err);
      })
    }
  })
}

实现promise.allsettle

MDN: Promise.allSettled()方法返回一个在所有给定的promise已经fulfilledrejected后的promise,并带有一个对象数组,每个对象表示对应的promise`结果

当您有多个彼此不依赖的异步任务成功完成时,或者您总是想知道每个promise的结果时,通常使用它。

【译】Promise.allSettledPromise.all 类似, 其参数接受一个Promise的数组, 返回一个新的Promise, 唯一的不同在于, 其不会进行短路, 也就是说当Promise全部处理完成后我们可以拿到每个Promise的状态, 而不管其是否处理成功。

用法 | 测试用例

代码语言:javascript复制
let fs = require('fs').promises;

let getName = fs.readFile('./name.txt', 'utf8'); // 读取文件成功
let getAge = fs.readFile('./age.txt', 'utf8');

Promise.allSettled([1, getName, getAge, 2]).then(data => {
    console.log(data);
});
// 输出结果
/*
    [
    { status: 'fulfilled', value: 1 },
    { status: 'fulfilled', value: 'zf' },
    { status: 'fulfilled', value: '11' },
    { status: 'fulfilled', value: 2 }
    ]
*/

let getName = fs.readFile('./name123.txt', 'utf8'); // 读取文件失败
let getAge = fs.readFile('./age.txt', 'utf8');
// 输出结果
/*
    [
    { status: 'fulfilled', value: 1 },
    {
      status: 'rejected',
      value: [Error: ENOENT: no such file or directory, open './name123.txt'] {
        errno: -2,
        code: 'ENOENT',
        syscall: 'open',
        path: './name123.txt'
      }
    },
    { status: 'fulfilled', value: '11' },
    { status: 'fulfilled', value: 2 }
  ]
*/

实现

代码语言:javascript复制
function isPromise (val) {
  return typeof val.then === 'function'; // (123).then => undefined
}

Promise.allSettled = function(promises) {
  return new Promise((resolve, reject) => {
    let arr = [];
    let times = 0;
    const setData = (index, data) => {
      arr[index] = data;
      if (  times === promises.length) {
        resolve(arr);
      }
      console.log('times', times)
    }

    for (let i = 0; i < promises.length; i  ) {
      let current = promises[i];
      if (isPromise(current)) {
        current.then((data) => {
          setData(i, { status: 'fulfilled', value: data });
        }, err => {
          setData(i, { status: 'rejected', value: err })
        })
      } else {
        setData(i, { status: 'fulfilled', value: current })
      }
    }
  })
}

实现 Promise.race

race 的实现相比之下就简单一些,只要有一个 promise 执行完,直接 resolve 并停止执行

代码语言:javascript复制
Promise.race = function(promises) {
  return new Promise((resolve, reject) => {
    let len = promises.length;
    if(len === 0) return;
    for(let i = 0; i < len; i  ) {
      Promise.resolve(promise[i]).then(data => {
        resolve(data);
        return;
      }).catch(err => {
        reject(err);
        return;
      })
    }
  })
}

实现一个简版Promise

代码语言:javascript复制
// 使用
var promise = new Promise((resolve,reject) => {
    if (操作成功) {
        resolve(value)
    } else {
        reject(error)
    }
})
promise.then(function (value) {
    // success
},function (value) {
    // failure
})
代码语言:javascript复制
function myPromise(constructor) {
    let self = this;
    self.status = "pending"   // 定义状态改变前的初始状态
    self.value = undefined;   // 定义状态为resolved的时候的状态
    self.reason = undefined;  // 定义状态为rejected的时候的状态
    function resolve(value) {
       if(self.status === "pending") {
          self.value = value;
          self.status = "resolved";
       }
    }
    function reject(reason) {
       if(self.status === "pending") {
          self.reason = reason;
          self.status = "rejected";
       }
    }
    // 捕获构造异常
    try {
       constructor(resolve,reject);
    } catch(e) {
       reject(e);
    }
}
代码语言:javascript复制
// 添加 then 方法
myPromise.prototype.then = function(onFullfilled,onRejected) {
   let self = this;
   switch(self.status) {
      case "resolved":
        onFullfilled(self.value);
        break;
      case "rejected":
        onRejected(self.reason);
        break;
      default:       
   }
}

var p = new myPromise(function(resolve,reject) {
    resolve(1)
});
p.then(function(x) {
    console.log(x) // 1
})

使用class实现

代码语言:javascript复制
class MyPromise {
  constructor(fn) {
    this.resolvedCallbacks = [];
    this.rejectedCallbacks = [];

    this.state = 'PENDING';
    this.value = '';

    fn(this.resolve.bind(this), this.reject.bind(this));

  }

  resolve(value) {
    if (this.state === 'PENDING') {
      this.state = 'RESOLVED';
      this.value = value;

      this.resolvedCallbacks.map(cb => cb(value));   
    }
  }

  reject(value) {
    if (this.state === 'PENDING') {
      this.state = 'REJECTED';
      this.value = value;

      this.rejectedCallbacks.map(cb => cb(value));
    }
  }

  then(onFulfilled, onRejected) {
    if (this.state === 'PENDING') {
      this.resolvedCallbacks.push(onFulfilled);
      this.rejectedCallbacks.push(onRejected);

    }

    if (this.state === 'RESOLVED') {
      onFulfilled(this.value);
    }

    if (this.state === 'REJECTED') {
      onRejected(this.value);
    }
  }
}

Promise 实现-详细

  • 可以把 Promise 看成一个状态机。初始是 pending 状态,可以通过函数 resolvereject ,将状态转变为 resolved或者 rejected 状态,状态一旦改变就不能再次变化。
  • then 函数会返回一个 Promise 实例,并且该返回值是一个新的实例而不是之前的实例。因为 Promise 规范规定除了 pending 状态,其他状态是不可以改变的,如果返回的是一个相同实例的话,多个 then 调用就失去意义了。
  • 对于 then来说,本质上可以把它看成是 flatMap
代码语言:javascript复制
// 三种状态
const PENDING = "pending";
const RESOLVED = "resolved";
const REJECTED = "rejected";
// promise 接收一个函数参数,该函数会立即执行
function MyPromise(fn) {
  let _this = this;
  _this.currentState = PENDING;
  _this.value = undefined;
  // 用于保存 then 中的回调,只有当 promise
  // 状态为 pending 时才会缓存,并且每个实例至多缓存一个
  _this.resolvedCallbacks = [];
  _this.rejectedCallbacks = [];

  _this.resolve = function (value) {
    if (value instanceof MyPromise) {
      // 如果 value 是个 Promise,递归执行
      return value.then(_this.resolve, _this.reject)
    }
    setTimeout(() => { // 异步执行,保证执行顺序
      if (_this.currentState === PENDING) {
        _this.currentState = RESOLVED;
        _this.value = value;
        _this.resolvedCallbacks.forEach(cb => cb());
      }
    })
  };

  _this.reject = function (reason) {
    setTimeout(() => { // 异步执行,保证执行顺序
      if (_this.currentState === PENDING) {
        _this.currentState = REJECTED;
        _this.value = reason;
        _this.rejectedCallbacks.forEach(cb => cb());
      }
    })
  }
  // 用于解决以下问题
  // new Promise(() => throw Error('error))
  try {
    fn(_this.resolve, _this.reject);
  } catch (e) {
    _this.reject(e);
  }
}

MyPromise.prototype.then = function (onResolved, onRejected) {
  var self = this;
  // 规范 2.2.7,then 必须返回一个新的 promise
  var promise2;
  // 规范 2.2.onResolved 和 onRejected 都为可选参数
  // 如果类型不是函数需要忽略,同时也实现了透传
  // Promise.resolve(4).then().then((value) => console.log(value))
  onResolved = typeof onResolved === 'function' ? onResolved : v => v;
  onRejected = typeof onRejected === 'function' ? onRejected : r => throw r;

  if (self.currentState === RESOLVED) {
    return (promise2 = new MyPromise(function (resolve, reject) {
      // 规范 2.2.4,保证 onFulfilled,onRjected 异步执行
      // 所以用了 setTimeout 包裹下
      setTimeout(function () {
        try {
          var x = onResolved(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (reason) {
          reject(reason);
        }
      });
    }));
  }

  if (self.currentState === REJECTED) {
    return (promise2 = new MyPromise(function (resolve, reject) {
      setTimeout(function () {
        // 异步执行onRejected
        try {
          var x = onRejected(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (reason) {
          reject(reason);
        }
      });
    }));
  }

  if (self.currentState === PENDING) {
    return (promise2 = new MyPromise(function (resolve, reject) {
      self.resolvedCallbacks.push(function () {
        // 考虑到可能会有报错,所以使用 try/catch 包裹
        try {
          var x = onResolved(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (r) {
          reject(r);
        }
      });

      self.rejectedCallbacks.push(function () {
        try {
          var x = onRejected(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (r) {
          reject(r);
        }
      });
    }));
  }
};
// 规范 2.3
function resolutionProcedure(promise2, x, resolve, reject) {
  // 规范 2.3.1,x 不能和 promise2 相同,避免循环引用
  if (promise2 === x) {
    return reject(new TypeError("Error"));
  }
  // 规范 2.3.2
  // 如果 x 为 Promise,状态为 pending 需要继续等待否则执行
  if (x instanceof MyPromise) {
    if (x.currentState === PENDING) {
      x.then(function (value) {
        // 再次调用该函数是为了确认 x resolve 的
        // 参数是什么类型,如果是基本类型就再次 resolve
        // 把值传给下个 then
        resolutionProcedure(promise2, value, resolve, reject);
      }, reject);
    } else {
      x.then(resolve, reject);
    }
    return;
  }
  // 规范 2.3.3.3.3
  // reject 或者 resolve 其中一个执行过得话,忽略其他的
  let called = false;
  // 规范 2.3.3,判断 x 是否为对象或者函数
  if (x !== null && (typeof x === "object" || typeof x === "function")) {
    // 规范 2.3.3.2,如果不能取出 then,就 reject
    try {
      // 规范 2.3.3.1
      let then = x.then;
      // 如果 then 是函数,调用 x.then
      if (typeof then === "function") {
        // 规范 2.3.3.3
        then.call(
          x,
          y => {
            if (called) return;
            called = true;
            // 规范 2.3.3.3.1
            resolutionProcedure(promise2, y, resolve, reject);
          },
          e => {
            if (called) return;
            called = true;
            reject(e);
          }
        );
      } else {
        // 规范 2.3.3.4
        resolve(x);
      }
    } catch (e) {
      if (called) return;
      called = true;
      reject(e);
    }
  } else {
    // 规范 2.3.4,x 为基本类型
    resolve(x);
  }
}

实现Promisify

代码语言:javascript复制
const fs = require('fs')
const path = require('path')

// node中使用
// const fs = require('fs').promises 12.18版
// const promisify = require('util').promisify

// 包装node api promise化 典型的高级函数
const promisify = fn=>{
  return (...args)=>{
    return new Promise((resolve,reject)=>{
      fn(...args, (err,data)=>{
        if(err) {
          reject(err)
        } 
        resolve(data)
      })
    })
  }
}

// const read = promisify(fs.readFile)

// read(path.join(__dirname, './promise.js'), 'utf8').then(d=>{
//   console.log(d)
// })

// promise化node所有api
const promisifyAll = target=>{
  Reflect.ownKeys(target).forEach(key=>{
    if(typeof target[key] === 'function') {
      target[key 'Async'] = promisify(target[key])
    }
  })
  return target
}

// promise化fs下的函数
const promisifyNew = promisifyAll(fs)

promisifyNew.readFileAsync(path.join(__dirname, './promise.js'), 'utf8').then(d=>{
  console.log(d)
})

module.exports = {
  promisify,
  promisifyAll
}

完整实现Promises/A 规范

代码语言:javascript复制
/**
 * Promises/A 规范 实现一个promise
 * https://promisesaplus.com/
*/

const EMUM = {
  PENDING: 'PENDING',
  FULFILLED: 'FULFILLED',
  REJECTED: 'REJECTED'
}

// x 返回值
// promise2 then的时候new的promise
// promise2的resolve, reject
const resolvePromise = (x, promise2, resolve, reject)=>{
  // 解析promise的值解析promise2是成功还是失败 传递到下层then
  if(x === promise2) {
    reject(new TypeError('类型错误'))
  }
  // 这里的x如果是一个promise的话 可能是其他的promise,可能调用了成功 又调用了失败
  // 防止resolve的时候 又throw err抛出异常到reject了
  let called
  // 如果x是promise 那么就采用他的状态
  // 有then方法是promise
  if(typeof x === 'object' && typeof x!== null || typeof x === 'function') {
    // x是对象或函数
    try {
      let then = x.then // 缓存,不用多次取值
      if(typeof then === 'function') {
        // 是promise,调用then方法里面有this,需要传入this为x才能取到then方法里面的值this.value
        then.call(x, y=>{// 成功
          // y值可能也是一个promise 如resolve(new Promise()) 此时的y==new Promise()
          // 递归解析y,直到拿到普通的值resolve(x出去)
          if(called) return;
          called = true;

          resolvePromise(y, promise2, resolve, reject)
        },r=>{// 一旦失败直接失败
          if(called) return;
          called = true;
          reject(r)
        })
      } else {
        // 普通对象不是promise
        resolve(x)
      }
    } catch (e) {
      // 对象取值可能报错,用defineProperty定义get 抛出异常
      if(called) return;
      called = true;
      reject(e)
    }
  } else {
    // x是普通值
    resolve(x) // 直接成功
  }

}
class myPromise {
  constructor(executor) {
    this.status = EMUM.PENDING // 当前状态
    this.value = undefined // resolve接收值
    this.reason = undefined // reject失败返回值

    /**
     * 同一个promise可以then多次(发布订阅模式)
     * 调用then时 当前状态是等待态,需要将当前成功或失败的回调存放起来(订阅)
     * 调用resolve时 将订阅函数进行执行(发布)
    */
    // 成功队列
    this.onResolvedCallbacks = []
    // 失败队列
    this.onRejectedCallbacks = []
    const resolve = value =>{
      // 如果value是一个promise,需要递归解析
      // 如 myPromise.resolve(new myPromise()) 需要解析value
      if(value instanceof myPromise) {
        // 不停的解析 直到值不是promise
        return value.then(resolve,reject)
      }

      if(this.status === EMUM.PENDING) {
        this.status = EMUM.FULFILLED
        this.value = value

        this.onResolvedCallbacks.forEach(fn=>fn())
      }
    }
    const reject = reason =>{
      if(this.status === EMUM.PENDING) {
        this.status = EMUM.REJECTED
        this.reason = reason

        this.onRejectedCallbacks.forEach(fn=>fn())
      }
    }
    try {
      executor(resolve,reject)
    } catch(e) {
      reject(e)
    }
  }
  then(onFulFilled, onRejected) {
    // 透传 处理默认不传的情况
    // new Promise((resolve,reject)=>{
    //   resolve(1)
    // }).then().then().then(d=>{})
    // new Promise((resolve,reject)=>{
    //   resolve(1)
    // }).then(v=>v).then(v=>v).then(d=>{})
    // new Promise((resolve,reject)=>{
    //   reject(1)
    // }).then().then().then(null, e=>{console.log(e)})
    // new Promise((resolve,reject)=>{
    //   reject(1)
    // }).then(null,e=>{throw e}).then(null,e=>{throw e}).then(null,e=>{console.log(e)})
    onFulFilled = typeof onFulFilled === 'function' ? onFulFilled : v => v
    onRejected = typeof onRejected === 'function' ? onRejected : err => {throw err}

    // 调用then 创建一个新的promise
    let promise2 = new myPromise((resolve,reject)=>{
      // 根据value判断是resolve 还是reject value也可能是promise
      if(this.status === EMUM.FULFILLED) {
        setTimeout(() => {
          try {
            // 成功回调结果
            let x = onFulFilled(this.value)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        }, 0);
      }
      if(this.status === EMUM.REJECTED) {
        setTimeout(() => {
          try {
            let x = onRejected(this.reason)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        }, 0);
      }
      // 用户还未调用resolve或reject方法
      if(this.status === EMUM.PENDING) {
        this.onResolvedCallbacks.push(()=>{
          try {
            let x = onFulFilled(this.value)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        })
        this.onRejectedCallbacks.push(()=>{
          try {
            let x = onRejected(this.reason)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        })
      }
    })

    return promise2
  }
  catch(errCallback) {
    // 等同于没有成功,把失败放进去而已
    return this.then(null, errCallback)
  }
  // myPromise.resolve 具备等待功能的 如果参数的promise会等待promise解析完毕在向下执行
  static resolve(val) {
    return new myPromise((resolve,reject)=>{
      resolve(val)
    })
  }
  // myPromise.reject 直接将值返回
  static reject(reason) {
    return new myPromise((resolve,reject)=>{
      reject(reason)
    })
  }
  // finally传入的函数 无论成功或失败都执行
  // Promise.reject(100).finally(()=>{console.log(1)}).then(d=>console.log('success',d)).catch(er=>console.log('faild',er))
  // Promise.reject(100).finally(()=>new Promise()).then(d=>console.log(d)).catch(er=>)
  finally(callback) {
    return this.then((val)=>{
      return myPromise.resolve(callback()).then(()=>val)
    },(err)=>{
      return myPromise.resolve(callback()).then(()=>{throw err})
    })
  }
  // Promise.all
  static all(values) {
    return new myPromise((resolve,reject)=>{
      let resultArr = []
      let orderIndex = 0
      const processResultByKey = (value,index)=>{
        resultArr[index] = value 
        // 处理完全部
        if(  orderIndex === values.length) {
          resolve(resultArr) // 处理完成的结果返回去
        }
      }
      for (let i = 0; i < values.length; i  ) {
        const value = values[i];
        // 是promise
        if(value && typeof value.then === 'function') {
          value.then((val)=>{
            processResultByKey(val,i)
          },reject)
        } else {
          // 不是promise情况
          processResultByKey(value,i)
        }
      }
    })
  }
  static race(promises) {
    // 采用最新成功或失败的作为结果
    return new myPromise((resolve,reject)=>{
      for (let i = 0; i < promises.length; i  ) {
        let val = promises[i]
        if(val && typeof val.then === 'function') {
          // 任何一个promise先调用resolve或reject就返回结果了 也就是返回执行最快的那个promise的结果
          val.then(resolve,reject)
        }else{
          // 普通值
          resolve(val)
        }
      }
    })
  }
}


/**
 * =====测试用例-====
 */
// let promise1 = new myPromise((resolve,reject)=>{
//   setTimeout(() => {
//     resolve('成功')
//   }, 900);
// })

// promise1.then(val=>{
//   console.log('success', val)
// },reason=>{
//   console.log('fail', reason)
// })

/**
 * then的使用方式 普通值意味不是promise
 * 
 * 1、then中的回调有两个方法 成功或失败 他们的结果返回(普通值)会传递给外层的下一个then中
 * 2、可以在成功或失败中抛出异常,走到下一次then的失败中
 * 3、返回的是一个promsie,那么会用这个promise的状态作为结果,会用promise的结果向下传递
 * 4、错误处理,会默认先找离自己最新的错误处理,找不到就向下查找,找打了就执行
 */

// read('./name.txt').then(data=>{
//   return '123'
// }).then(data=>{

// }).then(null,err=>{

// })
// // .catch(err=>{ // catch就是没有成功的promise

// // })

/**
 * promise.then实现原理:通过每次返回一个新的promise来实现(promise一旦成功就不能失败,失败就不能成功)
 * 
 */

// function read(data) {
//   return new myPromise((resolve,reject)=>{
//     setTimeout(() => {
//       resolve(new myPromise((resolve,reject)=>resolve(data)))
//     }, 1000);
//   })
// }

// let promise2 = read({name: 'poetry'}).then(data=>{
//   return data
// }).then().then().then(data=>{
//   console.log(data,'-data-')
// },(err)=>{
//   console.log(err,'-err-')
// })

// finally测试
// myPromise
//   .resolve(100)
//   .finally(()=>{
//     return new myPromise((resolve,reject)=>setTimeout(() => {
//       resolve(100)
//     }, 100))
//   })
//   .then(d=>console.log('finally success',d))
//   .catch(er=>console.log(er, 'finally err'))


/**
 * promise.all 测试
 * 
 * myPromise.all 解决并发问题 多个异步并发获取最终的结果
*/

// myPromise.all([1,2,3,4,new myPromise((resolve,reject)=>{
//   setTimeout(() => {
//     resolve('ok1')
//   }, 1000);
// }),new myPromise((resolve,reject)=>{
//   setTimeout(() => {
//     resolve('ok2')
//   }, 1000);
// })]).then(d=>{
//   console.log(d,'myPromise.all.resolve')
// }).catch(err=>{
//   console.log(err,'myPromise.all.reject')
// })


// 实现promise中断请求
let promise = new Promise((resolve,reject)=>{
  setTimeout(() => {
    // 模拟接口调用 ajax调用超时
    resolve('成功') 
  }, 10000);
})

function promiseWrap(promise) {
  // 包装一个promise 可以控制原来的promise是成功 还是失败
  let abort
  let newPromsie = new myPromise((resolve,reject)=>{
    abort = reject
  })
  // 只要控制newPromsie失败,就可以控制被包装的promise走向失败
  // Promise.race 任何一个先成功或者失败 就可以获得结果
  let p = myPromise.race([promise, newPromsie])
  p.abort = abort

  return p
}

let newPromise = promiseWrap(promise)

setTimeout(() => {
  // 超过3秒超时
  newPromise.abort('请求超时')
}, 3000);

newPromise.then(d=>{
  console.log('d',d)
}).catch(err=>{
  console.log('err',err)
})


// 使用promises-aplus-tests 测试写的promise是否规范
// 全局安装 cnpm i -g promises-aplus-tests
// 命令行执行 promises-aplus-tests promise.js
// 测试入口 产生延迟对象
myPromise.defer = myPromise.deferred = function () {
  let dfd = {}
  dfd.promise = new myPromise((resolve,reject)=>{
    dfd.resolve = resolve
    dfd.reject = reject
  })
  return dfd
}

// 延迟对象用户
// ![](http://img-repo.poetries.top/images/20210509172817.png)
// promise解决嵌套问题
// function readData(url) {
//   let dfd = myPromise.defer()
//   fs.readFile(url, 'utf8', function (err,data) {
//     if(err) {
//       dfd.reject()
//     }
//     dfd.resolve(data)
//   })
//   return dfd.promise
// }
// readData().then(d=>{
//   return d
// })

module.exports = myPromise

模拟new

new操作符做了这些事:

  • 它创建了一个全新的对象
  • 它会被执行[Prototype](也就是proto)链接
  • 它使this指向新创建的对象
  • 通过new创建的每个对象将最终被[Prototype]链接到这个函数的prototype对象上
  • 如果函数没有返回对象类型Object(包含Functoin, Array, Date, RegExg, Error),那么new表达式中的函数调用将返回该对象引用
代码语言:text复制
// objectFactory(name, 'cxk', '18')
function objectFactory() {
  const obj = new Object();
  const Constructor = [].shift.call(arguments);

  obj.__proto__ = Constructor.prototype;

  const ret = Constructor.apply(obj, arguments);

  return typeof ret === "object" ? ret : obj;
}

实现 add(1)(2)(3)

函数柯里化概念: 柯里化(Currying)是把接受多个参数的函数转变为接受一个单一参数的函数,并且返回接受余下的参数且返回结果的新函数的技术。

1)粗暴版

代码语言:javascript复制
function add (a) {
return function (b) {
     return function (c) {
      return a   b   c;
     }
}
}
console.log(add(1)(2)(3)); // 6

2)柯里化解决方案

  • 参数长度固定
代码语言:javascript复制
var add = function (m) {
  var temp = function (n) {
    return add(m   n);
  }
  temp.toString = function () {
    return m;
  }
  return temp;
};
console.log(add(3)(4)(5)); // 12
console.log(add(3)(6)(9)(25)); // 43

对于add(3)(4)(5),其执行过程如下:

  1. 先执行add(3),此时m=3,并且返回temp函数;
  2. 执行temp(4),这个函数内执行add(m n),n是此次传进来的数值4,m值还是上一步中的3,所以add(m n)=add(3 4)=add(7),此时m=7,并且返回temp函数
  3. 执行temp(5),这个函数内执行add(m n),n是此次传进来的数值5,m值还是上一步中的7,所以add(m n)=add(7 5)=add(12),此时m=12,并且返回temp函数
  4. 由于后面没有传入参数,等于返回的temp函数不被执行而是打印,了解JS的朋友都知道对象的toString是修改对象转换字符串的方法,因此代码中temp函数的toString函数return m值,而m值是最后一步执行函数时的值m=12,所以返回值是12。
  5. 参数长度不固定
代码语言:javascript复制
function add (...args) {
    //求和
    return args.reduce((a, b) => a   b)
}
function currying (fn) {
    let args = []
    return function temp (...newArgs) {
        if (newArgs.length) {
            args = [
                ...args,
                ...newArgs
            ]
            return temp
        } else {
            let val = fn.apply(this, args)
            args = [] //保证再次调用时清空
            return val
        }
    }
}
let addCurry = currying(add)
console.log(addCurry(1)(2)(3)(4, 5)())  //15
console.log(addCurry(1)(2)(3, 4, 5)())  //15
console.log(addCurry(1)(2, 3, 4, 5)())  //15

手写 Promise

代码语言:javascript复制
const PENDING = "pending";
const RESOLVED = "resolved";
const REJECTED = "rejected";

function MyPromise(fn) {
  // 保存初始化状态
  var self = this;

  // 初始化状态
  this.state = PENDING;

  // 用于保存 resolve 或者 rejected 传入的值
  this.value = null;

  // 用于保存 resolve 的回调函数
  this.resolvedCallbacks = [];

  // 用于保存 reject 的回调函数
  this.rejectedCallbacks = [];

  // 状态转变为 resolved 方法
  function resolve(value) {
    // 判断传入元素是否为 Promise 值,如果是,则状态改变必须等待前一个状态改变后再进行改变
    if (value instanceof MyPromise) {
      return value.then(resolve, reject);
    }

    // 保证代码的执行顺序为本轮事件循环的末尾
    setTimeout(() => {
      // 只有状态为 pending 时才能转变,
      if (self.state === PENDING) {
        // 修改状态
        self.state = RESOLVED;

        // 设置传入的值
        self.value = value;

        // 执行回调函数
        self.resolvedCallbacks.forEach(callback => {
          callback(value);
        });
      }
    }, 0);
  }

  // 状态转变为 rejected 方法
  function reject(value) {
    // 保证代码的执行顺序为本轮事件循环的末尾
    setTimeout(() => {
      // 只有状态为 pending 时才能转变
      if (self.state === PENDING) {
        // 修改状态
        self.state = REJECTED;

        // 设置传入的值
        self.value = value;

        // 执行回调函数
        self.rejectedCallbacks.forEach(callback => {
          callback(value);
        });
      }
    }, 0);
  }

  // 将两个方法传入函数执行
  try {
    fn(resolve, reject);
  } catch (e) {
    // 遇到错误时,捕获错误,执行 reject 函数
    reject(e);
  }
}

MyPromise.prototype.then = function(onResolved, onRejected) {
  // 首先判断两个参数是否为函数类型,因为这两个参数是可选参数
  onResolved =
    typeof onResolved === "function"
      ? onResolved
      : function(value) {
          return value;
        };

  onRejected =
    typeof onRejected === "function"
      ? onRejected
      : function(error) {
          throw error;
        };

  // 如果是等待状态,则将函数加入对应列表中
  if (this.state === PENDING) {
    this.resolvedCallbacks.push(onResolved);
    this.rejectedCallbacks.push(onRejected);
  }

  // 如果状态已经凝固,则直接执行对应状态的函数

  if (this.state === RESOLVED) {
    onResolved(this.value);
  }

  if (this.state === REJECTED) {
    onRejected(this.value);
  }
};

实现类的继承

实现类的继承-简版

类的继承在几年前是重点内容,有n种继承方式各有优劣,es6普及后越来越不重要,那么多种写法有点『回字有四样写法』的意思,如果还想深入理解的去看红宝书即可,我们目前只实现一种最理想的继承方式。

代码语言:javascript复制
// 寄生组合继承
function Parent(name) {
  this.name = name
}
Parent.prototype.say = function() {
  console.log(this.name   ` say`);
}
Parent.prototype.play = function() {
  console.log(this.name   ` play`);
}

function Child(name, parent) {
  // 将父类的构造函数绑定在子类上
  Parent.call(this, parent)
  this.name = name
}

/** 
 1. 这一步不用Child.prototype = Parent.prototype的原因是怕共享内存,修改父类原型对象就会影响子类
 2. 不用Child.prototype = new Parent()的原因是会调用2次父类的构造方法(另一次是call),会存在一份多余的父类实例属性
3. Object.create是创建了父类原型的副本,与父类原型完全隔离
*/
Child.prototype = Object.create(Parent.prototype);
Child.prototype.say = function() {
  console.log(this.name   ` say`);
}

// 注意记得把子类的构造指向子类本身
Child.prototype.constructor = Child;
代码语言:javascript复制
// 测试
var parent = new Parent('parent');
parent.say() 

var child = new Child('child');
child.say() 
child.play(); // 继承父类的方法

ES5实现继承-详细

第一种方式是借助call实现继承

代码语言:javascript复制
function Parent1(){
    this.name = 'parent1';
}
function Child1(){
    Parent1.call(this);
    this.type = 'child1'    
}
console.log(new Child1);

这样写的时候子类虽然能够拿到父类的属性值,但是问题是父类中一旦存在方法那么子类无法继承。那么引出下面的方法

第二种方式借助原型链实现继承:

代码语言:javascript复制
function Parent2() {
    this.name = 'parent2';
    this.play = [1, 2, 3]
  }
  function Child2() {
    this.type = 'child2';
  }
  Child2.prototype = new Parent2();

  console.log(new Child2());

看似没有问题,父类的方法和属性都能够访问,但实际上有一个潜在的不足。举个例子:

代码语言:javascript复制
var s1 = new Child2();
  var s2 = new Child2();
  s1.play.push(4);
  console.log(s1.play, s2.play); // [1,2,3,4] [1,2,3,4]

明明我只改变了s1的play属性,为什么s2也跟着变了呢?很简单,因为两个实例使用的是同一个原型对象

第三种方式:将前两种组合:

代码语言:javascript复制
function Parent3 () {
    this.name = 'parent3';
    this.play = [1, 2, 3];
  }
  function Child3() {
    Parent3.call(this);
    this.type = 'child3';
  }
  Child3.prototype = new Parent3();
  var s3 = new Child3();
  var s4 = new Child3();
  s3.play.push(4);
  console.log(s3.play, s4.play); // [1,2,3,4] [1,2,3]

之前的问题都得以解决。但是这里又徒增了一个新问题,那就是Parent3的构造函数会多执行了一次(Child3.prototype = new Parent3();)。这是我们不愿看到的。那么如何解决这个问题?

第四种方式: 组合继承的优化1

代码语言:javascript复制
function Parent4 () {
    this.name = 'parent4';
    this.play = [1, 2, 3];
  }
  function Child4() {
    Parent4.call(this);
    this.type = 'child4';
  }
  Child4.prototype = Parent4.prototype;

这里让将父类原型对象直接给到子类,父类构造函数只执行一次,而且父类属性和方法均能访问,但是我们来测试一下

代码语言:javascript复制
var s3 = new Child4();
  var s4 = new Child4();
  console.log(s3)

子类实例的构造函数是Parent4,显然这是不对的,应该是Child4。

第五种方式(最推荐使用):优化2

代码语言:javascript复制
function Parent5 () {
    this.name = 'parent5';
    this.play = [1, 2, 3];
  }
  function Child5() {
    Parent5.call(this);
    this.type = 'child5';
  }
  Child5.prototype = Object.create(Parent5.prototype);
  Child5.prototype.constructor = Child5;

这是最推荐的一种方式,接近完美的继承。

实现forEach方法

代码语言:javascript复制
Array.prototype.myForEach = function(callback, context=window) {
  // this=>arr
  let self = this,  
      i = 0,
      len = self.length;

  for(;i<len;i  ) {
    typeof callback == 'function' && callback.call(context,self[i], i)
   }
}

将js对象转化为树形结构

代码语言:javascript复制
// 转换前:
source = [{
            id: 1,
            pid: 0,
            name: 'body'
          }, {
            id: 2,
            pid: 1,
            name: 'title'
          }, {
            id: 3,
            pid: 2,
            name: 'div'
          }]
// 转换为: 
tree = [{
          id: 1,
          pid: 0,
          name: 'body',
          children: [{
            id: 2,
            pid: 1,
            name: 'title',
            children: [{
              id: 3,
              pid: 1,
              name: 'div'
            }]
          }
        }]

代码实现:

代码语言:javascript复制
function jsonToTree(data) {
  // 初始化结果数组,并判断输入数据的格式
  let result = []
  if(!Array.isArray(data)) {
    return result
  }
  // 使用map,将当前对象的id与当前对象对应存储起来
  let map = {};
  data.forEach(item => {
    map[item.id] = item;
  });
  // 
  data.forEach(item => {
    let parent = map[item.pid];
    if(parent) {
      (parent.children || (parent.children = [])).push(item);
    } else {
      result.push(item);
    }
  });
  return result;
}

使用Promise封装AJAX请求

代码语言:javascript复制
// promise 封装实现:
function getJSON(url) {
  // 创建一个 promise 对象
  let promise = new Promise(function(resolve, reject) {
    let xhr = new XMLHttpRequest();
    // 新建一个 http 请求
    xhr.open("GET", url, true);
    // 设置状态的监听函数
    xhr.onreadystatechange = function() {
      if (this.readyState !== 4) return;
      // 当请求成功或失败时,改变 promise 的状态
      if (this.status === 200) {
        resolve(this.response);
      } else {
        reject(new Error(this.statusText));
      }
    };
    // 设置错误监听函数
    xhr.onerror = function() {
      reject(new Error(this.statusText));
    };
    // 设置响应的数据类型
    xhr.responseType = "json";
    // 设置请求头信息
    xhr.setRequestHeader("Accept", "application/json");
    // 发送 http 请求
    xhr.send(null);
  });
  return promise;
}

数组去重

代码语言:javascript复制
const arr = [1, 1, '1', 17, true, true, false, false, 'true', 'a', {}, {}];
// => [1, '1', 17, true, false, 'true', 'a', {}, {}]
方法一:利用Set
代码语言:javascript复制
const res1 = Array.from(new Set(arr));
方法二:两层for循环 splice
代码语言:javascript复制
const unique1 = arr => {
  let len = arr.length;
  for (let i = 0; i < len; i  ) {
    for (let j = i   1; j < len; j  ) {
      if (arr[i] === arr[j]) {
        arr.splice(j, 1);
        // 每删除一个树,j--保证j的值经过自加后不变。同时,len--,减少循环次数提升性能
        len--;
        j--;
      }
    }
  }
  return arr;
}
方法三:利用indexOf
代码语言:javascript复制
const unique2 = arr => {
  const res = [];
  for (let i = 0; i < arr.length; i  ) {
    if (res.indexOf(arr[i]) === -1) res.push(arr[i]);
  }
  return res;
}

当然也可以用include、filter,思路大同小异。

方法四:利用include
代码语言:javascript复制
const unique3 = arr => {
  const res = [];
  for (let i = 0; i < arr.length; i  ) {
    if (!res.includes(arr[i])) res.push(arr[i]);
  }
  return res;
}
方法五:利用filter
代码语言:javascript复制
const unique4 = arr => {
  return arr.filter((item, index) => {
    return arr.indexOf(item) === index;
  });
}
方法六:利用Map
代码语言:javascript复制
const unique5 = arr => {
  const map = new Map();
  const res = [];
  for (let i = 0; i < arr.length; i  ) {
    if (!map.has(arr[i])) {
      map.set(arr[i], true)
      res.push(arr[i]);
    }
  }
  return res;
}

数组中的数据根据key去重

给定一个任意数组,实现一个通用函数,让数组中的数据根据 key 排重:

代码语言:javascript复制
const dedup = (data, getKey = () => {} ) => {
  // todo
}
let data = [
  { id: 1, v: 1 },
  { id: 2, v: 2 },
  { id: 1, v: 1 },
];

// 以 id 作为排重 key,执行函数得到结果
// data = [
//   { id: 1, v: 1 },
//   { id: 2, v: 2 },
// ];

实现

代码语言:javascript复制
const dedup = (data, getKey = () => { }) => {
    const dateMap = data.reduce((pre, cur) => {
        const key = getKey(cur)
        if (!pre[key]) {
            pre[key] = cur
        }
        return pre
    }, {})
    return Object.values(dateMap)
}

使用

代码语言:javascript复制
let data = [
    { id: 1, v: 1 },
    { id: 2, v: 2 },
    { id: 1, v: 1 },
];
console.log(dedup(data, (item) => item.id))

// 以 id 作为排重 key,执行函数得到结果
// data = [
//   { id: 1, v: 1 },
//   { id: 2, v: 2 },
// ];

手写 Promise.then

then 方法返回一个新的 promise 实例,为了在 promise 状态发生变化时(resolve / reject 被调用时)再执行 then 里的函数,我们使用一个 callbacks 数组先把传给then的函数暂存起来,等状态改变时再调用。

那么,怎么保证后一个 **then** 里的方法在前一个 **then**(可能是异步)结束之后再执行呢? 我们可以将传给 then 的函数和新 promiseresolve 一起 push 到前一个 promisecallbacks 数组中,达到承前启后的效果:

  • 承前:当前一个 promise 完成后,调用其 resolve 变更状态,在这个 resolve 里会依次调用 callbacks 里的回调,这样就执行了 then 里的方法了
  • 启后:上一步中,当 then 里的方法执行完成后,返回一个结果,如果这个结果是个简单的值,就直接调用新 promiseresolve,让其状态变更,这又会依次调用新 promisecallbacks 数组里的方法,循环往复。。如果返回的结果是个 promise,则需要等它完成之后再触发新 promiseresolve,所以可以在其结果的 then 里调用新 promiseresolve
代码语言:javascript复制
then(onFulfilled, onReject){
    // 保存前一个promise的this
    const self = this; 
    return new MyPromise((resolve, reject) => {
      // 封装前一个promise成功时执行的函数
      let fulfilled = () => {
        try{
          const result = onFulfilled(self.value); // 承前
          return result instanceof MyPromise? result.then(resolve, reject) : resolve(result); //启后
        }catch(err){
          reject(err)
        }
      }
      // 封装前一个promise失败时执行的函数
      let rejected = () => {
        try{
          const result = onReject(self.reason);
          return result instanceof MyPromise? result.then(resolve, reject) : reject(result);
        }catch(err){
          reject(err)
        }
      }
      switch(self.status){
        case PENDING: 
          self.onFulfilledCallbacks.push(fulfilled);
          self.onRejectedCallbacks.push(rejected);
          break;
        case FULFILLED:
          fulfilled();
          break;
        case REJECT:
          rejected();
          break;
      }
    })
   }

注意:

  • 连续多个 then 里的回调方法是同步注册的,但注册到了不同的 callbacks 数组中,因为每次 then 都返回新的 promise 实例(参考上面的例子和图)
  • 注册完成后开始执行构造函数中的异步事件,异步完成之后依次调用 callbacks 数组中提前注册的回调

0 人点赞