一 Redis Java客户端介绍
Redis Java客户端有很多的开源产品比如Redission、Jedis、lettuce
Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持; Redisson实现了分布式和可扩展的Java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等Redis特性。Redisson主要是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。 lettuce是基于Netty构建的一个可伸缩的线程安全的Redis客户端,支持同步、异步、响应式模式。多个线程可以共享一个连接实例,而不必担心多线程并发问题; jedis-sentinel原理分析 原理 客户端通过连接到哨兵集群,通过发送Protocol.SENTINEL_GET_MASTER_ADDR_BY_NAME 命令,从哨兵机器中询问master节点的信息,拿到master节点的ip和端口号以后,再到客户端发起连接。连接以后,需要在客户端建立监听机制,当master重新选举之后,客户端需要重新连接到新的master节点 源码分析
JedisSentinelPool initSentinels方法:
代码语言:javascript复制private HostAndPort initSentinels(Set<String> sentinels, String masterName) {
HostAndPort master = null;
boolean sentinelAvailable = false;
this.log.info("Trying to find master from available Sentinels...");
// 有多个sentinels,遍历这些个sentinels
Iterator var5 = sentinels.iterator();
String sentinel;
HostAndPort hap;
while(var5.hasNext()) {
sentinel = (String)var5.next();
// host:port表示的sentinel地址转化为一个HostAndPort对象。
hap = HostAndPort.parseString(sentinel);
this.log.debug("Connecting to Sentinel {}", hap);
Jedis jedis = null;
try {
// 连接到sentinel
jedis = new Jedis(hap.getHost(), hap.getPort(), this.sentinelConnectionTimeout, this.sentinelSoTimeout);
if (this.sentinelPassword != null) {
jedis.auth(this.sentinelPassword);
}
if (this.sentinelClientName != null) {
jedis.clientSetname(this.sentinelClientName);
}
// 根据masterName得到master的地址,返回一个list,host= list[0], port =// list[1]
List<String> masterAddr = jedis.sentinelGetMasterAddrByName(masterName);
sentinelAvailable = true;
if (masterAddr != null && masterAddr.size() == 2) {
// 如果在任何一个sentinel中找到了master,不再遍历sentinels
master = this.toHostAndPort(masterAddr);
this.log.debug("Found Redis master at {}", master);
break;
}
this.log.warn("Can not get master addr, master name: {}. Sentinel: {}", masterName, hap);
} catch (JedisException var13) {
this.log.warn("Cannot get master address from sentinel running @ {}. Reason: {}. Trying next one.", hap, var13.toString());
} finally {
if (jedis != null) {
jedis.close();
}
}
}
// 到这里,如果master为null,则说明有两种情况,一种是所有的sentinels节点都down掉了,一种是master节点没有被存活的sentinels监控到
if (master == null) {
if (sentinelAvailable) {
throw new JedisException("Can connect to sentinel, but " masterName " seems to be not monitored...");
} else {
throw new JedisConnectionException("All sentinels down, cannot determine where is " masterName " master is running...");
}
} else {
//如果走到这里,说明找到了master的地址
this.log.info("Redis master running at " master ", starting Sentinel listeners...");
var5 = sentinels.iterator();
//启动对每个sentinels的监听为每个sentinel都启动了一个监听者MasterListener。MasterListener本身是一个线程,它会去订阅sentinel上关于master节点地址改变的消息。
while(var5.hasNext()) {
sentinel = (String)var5.next();
hap = HostAndPort.parseString(sentinel);
JedisSentinelPool.MasterListener masterListener = new JedisSentinelPool.MasterListener(masterName, hap.getHost(), hap.getPort());
masterListener.setDaemon(true);
this.masterListeners.add(masterListener);
masterListener.start();
}
return master;
}
}
二 Jedis-cluster原理分析
连接方式
代码语言:javascript复制 Set<HostAndPort> hostAndPortSet=new HashSet<>();
hostAndPortSet.add(new HostAndPort("192.168.11.153",7000));
hostAndPortSet.add(new HostAndPort("192.168.11.153",7001));
JedisCluster jedisCluster=new JedisCluster(hostAndPortSet);
jedisCluster.set("","");
原理分析
程序启动初始化集群环境 1)、读取配置文件中的节点配置,无论是主从,无论多少个,只拿第一个,获取redis连接实例 2)、用获取的redis连接实例执行clusterNodes()方法,实际执行redis服务端cluster nodes命令,获取主从配置信息 3)、解析主从配置信息,先把所有节点存放到nodes的map集合中,key为节点的ip:port,value为当前节点的jedisPool 4)、解析主节点分配的slots区间段,把slot对应的索引值作为key,第三步中拿到的jedisPool作为value,存储在slots的map集合中 就实现了slot槽索引值与jedisPool的映射,这个jedisPool包含了master的节点信息,所以槽和几点是对应的,与redis服务端一致
从集群环境存取值 1)、把key作为参数,执行CRC16算法,获取key对应的slot值 2)、通过该slot值,去slots的map集合中获取jedisPool实例
3)、通过jedisPool实例获取jedis实例,最终完成redis数据存取工作
三 Redisson客户端的操作方式
redis-cluster连接方式
代码语言:javascript复制Config config=new Config();
config.useClusterServers().setScanInterval(2000).
addNodeAddress("redis://192.168.11.153:7000",
"redis://192.168.11.153:7001",
"redis://192.168.11.154:7003","redis://192.168.11.157:7006");
RedissonClient redissonClient= Redisson.create(config);
RBucket<String> rBucket=redissonClient.getBucket("mic");
System.out.println(rBucket.get());
常规操作命令
getBucket-> 获取字符串对象; getMap -> 获取map对象 getSortedSet->获取有序集合 getSet -> 获取集合 getList ->获取列表
redis实战
分布式锁的实现
关于锁,其实我们或多或少都有接触过一些,比如synchronized、 Lock这些,这类锁的目的很简单,在多线程环境下,对共享资源的访问造成的线程安全问题,通过锁的机制来实现资源访问互斥。那么什么是分布式锁呢?或者为什么我们需要通过Redis来构建分布式锁,其实最根本原因就是Score(范围),因为在分布式架构中,所有的应用都是进程隔离的,在多进程访问共享资源的时候我们需要满足互斥性,就需要设定一个所有进程都能看得到的范围,而这个范围就是Redis本身。所以我们才需要把锁构建到Redis中。 Redis里面提供了一些比较具有能够实现锁特性的命令,比如SETEX(在键不存在的情况下为键设置值),那么我们可以基于这个命令来去实现一些简单的锁的操作
Redisson实现分布式锁
Redisson它除了常规的操作命令以外,还基于redis本身的特性去实现了很多功能的封装,比如分布式锁、原子操作、布隆过滤器、队列等等。我们可以直接利用这个api提供的功能去实现
代码语言:javascript复制Config config=new Config();
config.useSingleServer().setAddress("redis://192.168.11.152:6379");
RedissonClient redissonClient=Redisson.create(config);
RLock rLock=redissonClient.getLock("updateOrder");
//最多等待100秒、上锁10s以后自动解锁
if(rLock.tryLock(100,10,TimeUnit.SECONDS)){
System.out.println("获取锁成功");
}
原理分析
trylock
代码语言:javascript复制public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
long time = unit.toMillis(waitTime);
long current = System.currentTimeMillis();
final long threadId = Thread.currentThread().getId();
//申请锁 返回剩余的锁的过期时间 这里------------
Long ttl = this.tryAcquire(leaseTime, unit);
if (ttl == null) {
//表示申请锁成功
return true;
} else {
tryAcquire调用 tryAcquireAsync
代码语言:javascript复制private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) {
if (leaseTime != -1L) {
//针对leaseTime(过期时间)是否设置过来做不同的转发
return this.tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
} else {
RFuture<Long> ttlRemainingFuture = this.tryLockInnerAsync(30L, TimeUnit.SECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.addListener(new FutureListener<Long>() {
public void operationComplete(Future<Long> future) throws Exception {
if (future.isSuccess()) {
Long ttlRemaining = (Long)future.getNow();
if (ttlRemaining == null) {
RedissonLock.this.scheduleExpirationRenewal(threadId);
}
}
}
});
return ttlRemainingFuture;
}
}
tryLockInnerAsync
代码语言:javascript复制<T> Future<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId,
RedisStrictCommand<T> command) {
internalLockLeaseTime = unit.toMillis(leaseTime);
// 3.使用 EVAL 命令执行 Lua 脚本获取锁
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
"if (redis.call('exists', KEYS[1]) == 0) then "
"redis.call('hset', KEYS[1], ARGV[2], 1); "
"redis.call('pexpire', KEYS[1], ARGV[1]); "
"return nil; "
"end; "
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then "
"redis.call('hincrby', KEYS[1], ARGV[2], 1); "
"redis.call('pexpire', KEYS[1], ARGV[1]); "
"return nil; "
"end; "
"return redis.call('pttl', KEYS[1]);",
Collections.<Object>singletonList(getName()), internalLockLeaseTime,
getLockName(threadId));
}
通过lua脚本来实现加锁的操作
- 判断lock键是否存在,不存在直接调用hset存储当前线程信息并且设置过期时间,返回nil,告诉客户端直接获取 到锁。
- 判断lock键是否存在,存在则将重入次数加1,并重新设置过期时间,返回nil,告诉客户端直接获取到锁。
- 被其它线程已经锁定,返回锁有效期的剩余时间,告诉客户端需要等待。
unlock
代码语言:javascript复制public void unlock() {
// 1.通过 EVAL 和 Lua 脚本执行 Redis 命令释放锁
Boolean opStatus = commandExecutor.evalWrite(getName(), LongCodec.INSTANCE,
RedisCommands.EVAL_BOOLEAN,
"if (redis.call('exists', KEYS[1]) == 0) then "
"redis.call('publish', KEYS[2], ARGV[1]); "
"return 1; "
"end;"
"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then "
"return nil;"
"end; "
"local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); "
"if (counter > 0) then "
"redis.call('pexpire', KEYS[1], ARGV[2]); "
"return 0; "
"else "
"redis.call('del', KEYS[1]); "
"redis.call('publish', KEYS[2], ARGV[1]); "
"return 1; "
"end; "
"return nil;",
Arrays.<Object>asList(getName(), getChannelName()),
LockPubSub.unlockMessage, internalLockLeaseTime,
getLockName(Thread.currentThread().getId()));
- 如果lock键不存在,发消息说锁已经可用,发送一个消息
- 如果锁不是被当前线程锁定,则返回nil
- 由于支持可重入,在解锁时将重入次数需要减1
- 如果计算后的重入次数>0,则重新设置过期时间
- 如果计算后的重入次数<=0,则发消息说锁已经可用
四 管道模式
Redis服务是一种C/S模型,提供请求-响应式协议的TCP服务,所以当客户端发起请求,服务端处理并返回结果到客户端,一般是以阻塞形式等待服务端的响应,但这在批量处理连接时延迟问题比较严重,所以Redis为了提升或弥补这个问题,引入了管道技术:可以做到服务端未及时响应的时候,客户端也可以继续发送命令请求,做到客户端和服务端互不影响,服务端并最终返回所有服务端的响应,大大提高了C/S模型交互的响应速度上有了质的提高
使用方法
代码语言:javascript复制Jedis jedis=new Jedis("192.168.11.152",6379);
Pipeline pipeline=jedis.pipelined();
for(int i=0;i<1000;i ){
pipeline.incr("test");
}
pipeline.sync();
五 Redis的应用架构
对于读多写少的高并发场景,我们会经常使用缓存来进行优化。比如说支付宝的余额展示功能,实际上99%的时候都是查询,1%的请求是变更(除非是土豪,每秒钟都有收入在不断更改余额),所以,我们在这样的场景下,可以加入缓存,用户->余额
六 Redis缓存与数据一致性问题
那么基于上面的这个出发点,问题就来了,当用户的余额发生变化的时候,如何更新缓存中的数据,也就是说。
- 我是先更新缓存中的数据再更新数据库的数据;
- 还是修改数据库中的数据再更新缓存中的数据
这就是我们经常会在面试遇到的问题,数据库的数据和缓存中的数据如何达到一致性?首先,可以肯定的是,redis中的数据和数据库中的数据不可能保证事务性达到统一的,这个是毫无疑问的,所以在实际应用中,我们都是基于当前的场景进行权衡降低出现不一致问题的出现概率
更新缓存还是让缓存失效
更新缓存表示数据不但会写入到数据库,还会同步更新缓存; 而让缓存失效是表示只更新数据库中的数据,然后删除缓存中对应的key。那么这两种方式怎么去选择?这块有一个衡量的指标。
- 如果更新缓存的代价很小,那么可以先更新缓存,这个代价很小的意思是我不需要很复杂的计算去获得最新的 余额数字。
- 如果是更新缓存的代价很大,意味着需要通过多个接口调用和数据查询才能获得最新的结果,那么可以先淘汰
缓存。淘汰缓存以后后续的请求如果在缓存中找不到,自然去数据库中检索。
先操作数据库还是先操作缓存?
当客户端发起事务类型请求时,假设我们以让缓存失效作为缓存的的处理方式,那么又会存在两个情况,
- 先更新数据库再让缓存失效
- 先让缓存失效,再更新数据库
前面我们讲过,更新数据库和更新缓存这两个操作,是无法保证原子性的,所以我们需要根据当前业务的场景的容忍性来选择。也就是如果出现不一致的情况下,哪一种更新方式对业务的影响最小,就先执行影响最小的方案
最终一致性的解决方案
关于缓存雪崩的解决方案
当缓存大规模渗透在整个架构中以后,那么缓存本身的可用性讲决定整个架构的稳定性。那么接下来我们来讨论下缓存在应用过程中可能会导致的问题。
缓存雪崩
缓存雪崩是指设置缓存时采用了相同的过期时间,导致缓存在某一个时刻同时失效,或者缓存服务器宕机宕机导致缓存全面失效,请求全部转发到了DB层面,DB由于瞬间压力增大而导致崩溃。缓存失效导致的雪崩效应对底层系统的冲击是很大的。 解决方式
- 对缓存的访问,如果发现从缓存中取不到值,那么通过加锁或者队列的方式保证缓存的单进程操作,从而避免失效时并发请求全部落到底层的存储系统上;但是这种方式会带来性能上的损耗
- 将缓存失效的时间分散,降低每一个缓存过期时间的重复率
- 如果是因为缓存服务器故障导致的问题,一方面需要保证缓存服务器的高可用、另一方面,应用程序中可以采用多级缓存
缓存穿透
缓存穿透是指查询一个根本不存在的数据,缓存和数据源都不会命中。出于容错的考虑,如果从数据层查不到数据则不写入缓存,即数据源返回值为 null 时,不缓存 null。缓存穿透问题可能会使后端数据源负载加大,由于很多后端数据源不具备高并发性,甚至可能造成后端数据源宕掉 解决方式
- 如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访 问数据库,这种办法最简单粗暴。比如,”key” , “&&”。 在返回这个&&值的时候,我们的应用就可以认为这是不存在的key,那我们的应用就可以决定是否继续等待继续访 问,还是放弃掉这次操作。如果继续等待访问,过一个时间轮询点后,再次请求这个key,如果取到的值不再是 &&,则可以认为这时候key有值了,从而避免了透传到数据库,从而把大量的类似请求挡在了缓存之中。
- 根据缓存数据Key的设计规则,将不符合规则的key进行过滤
采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的BitSet中,不存在的数据将会被拦截掉,从而避免了 对底层存储系统的查询压力
七 布隆过滤器
布隆过滤器是Burton Howard Bloom在1970年提出来的,一种空间效率极高的概率型算法和数据结构,主要用来判断一个元素是否在集合中存在。因为他是一个概率型的算法,所以会存在一定的误差,如果传入一个值去布隆过滤器中检索,可能会出现检测存在的结果但是实际上可能是不存在的,但是肯定不会出现实际上不存在然后反馈存在的结果。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。
bitmap
所谓的Bit-map就是用一个bit位来标记某个元素对应的Value,通过Bit为单位来存储数据,可以大大节省存储空间.所以我们可以通过一个int型的整数的32比特位来存储32个10进制的数字,那么这样所带来的好处是内存占用少、效率很高(不需要比较和位移)比如我们要存储5(101)、3(11)四个数字,那么我们申请int型的内存空间,会有32个比特位。这四个数字的二进制分别对应从右往左开始数,比如第一个数字是5,对应的二进制数据是101, 那么从右往左数到第5位,把对应的二进制数据存储到32个比特位上。 第一个5就是 00000000000000000000000000101000 输入3时候 00000000000000000000000000001100
布隆过滤器原理
有了对位图的理解以后,我们对布隆过滤器的原理理解就会更容易了,仍然以前面提到的40亿数据为案例,假设这40亿数据为某邮件服务器的黑名单数据,邮件服务需要根据邮箱地址来判断当前邮箱是否属于垃圾邮件。原理如下: 假设集合里面有3个元素{x, y, z},哈希函数的个数为3。首先将位数组进行初始化,将里面每个位都设置位0。对于集合里面的每一个元素,将元素依次通过3个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为1。查询W元素是否存在集合中的时候,同样的方法将W通过哈希映射到位数组上的3个点。如果3个点的其中有一个点不为1,则可以判断该元素一定不存在集合中。反之,如果3个点都为1,则该元素可能存在集合中
接下来按照该方法处理所有的输入对象,每个对象都可能把bitMap中一些白位置涂黑,也可能会遇到已经涂黑的位置,遇到已经为黑的让他继续为黑即可。处理完所有的输入对象之后,在bitMap中可能已经有相当多的位置已经被涂黑。至此,一个布隆过滤器生成完成,这个布隆过滤器代表之前所有输入对象组成的集合。 如何去判断一个元素是否存在bit array中呢? 原理是一样,根据k个哈希函数去得到的结果,如果所有的结果都是1,表示这个元素可能(假设某个元素通过映射对应下标为4,5,6这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1)存在。 如果一旦发现其中一个比特位的元素是0,表示这个元素一定不存在 至于k个哈希函数的取值为多少,能够最大化的降低错误率(因为哈希函数越多,映射冲突会越少),这个地方就会涉及到最优的哈希函数个数的一个算法逻辑