Mapreduce

2022-10-26 10:56:22 浏览数 (2)

Mapreduce

TOC

mapreduce原理

imgimg

MapReduce代码实现

mapper类

代码语言:java复制
@Slf4j
public class WcMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
//    @Override
//    protected void setup(Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
//        FileSplit inputSplit = (FileSplit) context.getInputSplit();
//
//        log.info("文件名为{},偏移量为{}", inputSplit.getPath().getName(), inputSplit.getStart());
//    }

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        String[] words = value.toString().split(" ");
        for (String word : words) {
            context.write(new Text(word), new IntWritable(1));
        }
    }
//
//    @Override
//    protected void cleanup(Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
//        super.cleanup(context);
//    }
}

reducer类

代码语言:java复制
public class WcReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {

        int count = 0;
        for (IntWritable value : values) {
            count  = value.get();
        }
        context.write(key, new IntWritable(count));
    }
}

partitioner类

代码语言:java复制
public class WcPartitioner extends Partitioner<Text, IntWritable> {

    @Override
    public int getPartition(Text text, IntWritable value, int numPartitions) {
        if (text.toString().equals("hadoop")) {
            return 0;
        } else {
            return 1;
        }
    }
}

装载类

代码语言:java复制
public class JobRunner {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
//        conf.set("mapred.job.queue.name", "test");
//        conf.set("mapreduce.map.memory.mb", "1024");
//        conf.set("mapreduce.reduce.memory.mb", "1024");
//        conf.setBoolean("mapred.output.compress", true);
//        conf.setClass("mapred.output.compression.codec", GzipCodec.class, CompressionCodec.class);


        Job job = Job.getInstance(conf, "wordcount");
        job.setMapperClass(WcMapper.class);
//        job.setPartitionerClass(WcPartitioner.class);
//        job.setCombinerClass(WcReducer.class);
        job.setReducerClass(WcReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        job.setNumReduceTasks(2);

        FileInputFormat.setInputPaths(job, new Path("file:///E:\workspace\study\data\wc\input\wordcount.txt"));

        Path outPath = new Path("file:///E:\workspace\study\data\wc\output");
        FileSystem fs = FileSystem.get(conf);
        if (fs.exists(outPath)) {
            fs.delete(outPath, true);
        }

        FileOutputFormat.setOutputPath(job, outPath);

        job.waitForCompletion(true);

    }
}

SQL转化为MapReduce的过程

整个编译过程分为六个阶段:

  1. Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree
  2. 遍历AST Tree,抽象出查询的基本组成单元QueryBlock
  3. 遍历QueryBlock,翻译为执行操作树OperatorTree
  4. 逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量
  5. 遍历OperatorTree,翻译为MapReduce任务
  6. 物理层优化器进行MapReduce任务的变换,生成最终的执行计划

MapReduce实现基本SQL操作的原理

Join的实现原理

代码语言:sql复制
select u.name, o.orderid from order o join user u on o.uid = u.uid;

在map的输出value中为不同表的数据打上tag标记,在reduce阶段根据tag判断数据来源。MapReduce的过程如下:

MapReduce CommonJoin的实现MapReduce CommonJoin的实现

Group By的实现原理

代码语言:sql复制
select rank, isonline, count(*) from city group by rank, isonline;

将GroupBy的字段组合为map的输出key值,利用MapReduce的排序,在reduce阶段保存LastKey区分不同的key。MapReduce的过程如下:

MapReduce Group By的实现MapReduce Group By的实现

Distinct的实现原理

代码语言:sql复制
select dealid, count(distinct uid) num from order group by dealid;

当只有一个distinct字段时,如果不考虑Map阶段的Hash GroupBy,只需要将GroupBy字段和Distinct字段组合为map输出key,利用mapreduce的排序,同时将GroupBy字段作为reduce的key,在reduce阶段保存LastKey即可完成去重

MapReduce Distinct的实现MapReduce Distinct的实现

如果有多个distinct字段呢,如下面的SQL

代码语言:sql复制
select dealid, count(distinct uid), count(distinct date) from order group by dealid;

实现方式有两种:

(1)如果仍然按照上面一个distinct字段的方法,即下图这种实现方式,无法跟据uid和date分别排序,也就无法通过LastKey去重,仍然需要在reduce阶段在内存中通过Hash去重

MapReduce Multi Distinct的实现MapReduce Multi Distinct的实现

(2)第二种实现方式,可以对所有的distinct字段编号,每行数据生成n行数据,那么相同字段就会分别排序,这时只需要在reduce阶段记录LastKey即可去重。

这种实现方式很好的利用了MapReduce的排序,节省了reduce阶段去重的内存消耗,但是缺点是增加了shuffle的数据量。

需要注意的是,在生成reduce value时,除第一个distinct字段所在行需要保留value值,其余distinct数据行value字段均可为空。

MapReduce Multi Distinct的实现MapReduce Multi Distinct的实现

数据倾斜

数据倾斜发生的现象

  • 绝大多数task执行得都非常快,但个别task执行极慢。比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时。
  • 原本能够正常执行的作业,某天突然报出OOM(内存溢出)异常,观察异常栈,是我们写的业务代码造成的

数据倾斜发生的原理

数据倾斜的原理很简单:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。

因此出现数据倾斜的时候,Spark作业看起来会运行得非常缓慢,甚至可能因为某个task处理的数据量过大导致内存溢出。

下图就是一个很清晰的例子:hello这个key,在三个节点上对应了总共7条数据,这些数据都会被拉取到同一个task中进行处理;而world和you这两个key分别才对应1条数据,所以另外两个task只要分别处理1条数据即可。此时第一个task的运行时间可能是另外两个task的7倍,而整个stage的运行速度也由运行最慢的那个task所决定。

<img src="https://awps-assets.meituan.net/mit-x/blog-images-bundle-2016/b6cbcfd9.png" alt="img" style="zoom:50%;" />

解决方案

提高shuffle操作的并行度

<img src="https://awps-assets.meituan.net/mit-x/blog-images-bundle-2016/ce6545e2.png" alt="img" style="zoom:50%;" />

两阶段聚合(局部聚合 全局聚合)

方案适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

方案实现思路:这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

方案实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。

方案优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

方案缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

<img src="https://awps-assets.meituan.net/mit-x/blog-images-bundle-2016/ed298b30.png" alt="img" style="zoom:50%;" />

reduce join转为map join

方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

方案实现思路:不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。

方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据 map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示。

方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。

方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。

<img src="https://awps-assets.meituan.net/mit-x/blog-images-bundle-2016/af80b7cb.png" alt="img" style="zoom:50%;" />

代码语言:java复制
// 首先将数据量比较小的RDD的数据,collect到Driver中来。
List<Tuple2<Long, Row>> rdd1Data = rdd1.collect()
// 然后使用Spark的广播功能,将小RDD的数据转换成广播变量,这样每个Executor就只有一份RDD的数据。
// 可以尽可能节省内存空间,并且减少网络传输性能开销。
final Broadcast<List<Tuple2<Long, Row>>> rdd1DataBroadcast = sc.broadcast(rdd1Data);
  
// 对另外一个RDD执行map类操作,而不再是join类操作。
JavaPairRDD<String, Tuple2<String, Row>> joinedRdd = rdd2.mapToPair(
        new PairFunction<Tuple2<Long,String>, String, Tuple2<String, Row>>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, Tuple2<String, Row>> call(Tuple2<Long, String> tuple)
                    throws Exception {
                // 在算子函数中,通过广播变量,获取到本地Executor中的rdd1数据。
                List<Tuple2<Long, Row>> rdd1Data = rdd1DataBroadcast.value();
                // 可以将rdd1的数据转换为一个Map,便于后面进行join操作。
                Map<Long, Row> rdd1DataMap = new HashMap<Long, Row>();
                for(Tuple2<Long, Row> data : rdd1Data) {
                    rdd1DataMap.put(data._1, data._2);
                }
                // 获取当前RDD数据的key以及value。
                String key = tuple._1;
                String value = tuple._2;
                // 从rdd1数据Map中,根据key获取到可以join到的数据。
                Row rdd1Value = rdd1DataMap.get(key);
                return new Tuple2<String, String>(key, new Tuple2<String, Row>(value, rdd1Value));
            }
        });
  
// 这里得提示一下。
// 上面的做法,仅仅适用于rdd1中的key没有重复,全部是唯一的场景。
// 如果rdd1中有多个相同的key,那么就得用flatMap类的操作,在进行join的时候不能用map,而是得遍历rdd1所有数据进行join。
// rdd2中每条数据都可能会返回多条join后的数据。
采样倾斜key并分拆join操作

方案适用场景:两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。

方案实现思路: 对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。 接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。 再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。 而另外两个普通的RDD就照常join即可。 最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。

方案实现原理:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。具体原理见下图。

方案优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。

方案缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。

<img src="https://awps-assets.meituan.net/mit-x/blog-images-bundle-2016/61c7dabc.png" alt="img" style="zoom:50%;" />

代码语言:java复制
// 首先从包含了少数几个导致数据倾斜key的rdd1中,采样10%的样本数据。
JavaPairRDD<Long, String> sampledRDD = rdd1.sample(false, 0.1);
  
// 对样本数据RDD统计出每个key的出现次数,并按出现次数降序排序。
// 对降序排序后的数据,取出top 1或者top 100的数据,也就是key最多的前n个数据。
// 具体取出多少个数据量最多的key,由大家自己决定,我们这里就取1个作为示范。
JavaPairRDD<Long, Long> mappedSampledRDD = sampledRDD.mapToPair(
        new PairFunction<Tuple2<Long,String>, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<Long, Long> call(Tuple2<Long, String> tuple)
                    throws Exception {
                return new Tuple2<Long, Long>(tuple._1, 1L);
            }     
        });
JavaPairRDD<Long, Long> countedSampledRDD = mappedSampledRDD.reduceByKey(
        new Function2<Long, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1   v2;
            }
        });
JavaPairRDD<Long, Long> reversedSampledRDD = countedSampledRDD.mapToPair( 
        new PairFunction<Tuple2<Long,Long>, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<Long, Long> call(Tuple2<Long, Long> tuple)
                    throws Exception {
                return new Tuple2<Long, Long>(tuple._2, tuple._1);
            }
        });
final Long skewedUserid = reversedSampledRDD.sortByKey(false).take(1).get(0)._2;
  
// 从rdd1中分拆出导致数据倾斜的key,形成独立的RDD。
JavaPairRDD<Long, String> skewedRDD = rdd1.filter(
        new Function<Tuple2<Long,String>, Boolean>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Boolean call(Tuple2<Long, String> tuple) throws Exception {
                return tuple._1.equals(skewedUserid);
            }
        });
// 从rdd1中分拆出不导致数据倾斜的普通key,形成独立的RDD。
JavaPairRDD<Long, String> commonRDD = rdd1.filter(
        new Function<Tuple2<Long,String>, Boolean>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Boolean call(Tuple2<Long, String> tuple) throws Exception {
                return !tuple._1.equals(skewedUserid);
            } 
        });
  
// rdd2,就是那个所有key的分布相对较为均匀的rdd。
// 这里将rdd2中,前面获取到的key对应的数据,过滤出来,分拆成单独的rdd,并对rdd中的数据使用flatMap算子都扩容100倍。
// 对扩容的每条数据,都打上0~100的前缀。
JavaPairRDD<String, Row> skewedRdd2 = rdd2.filter(
         new Function<Tuple2<Long,Row>, Boolean>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Boolean call(Tuple2<Long, Row> tuple) throws Exception {
                return tuple._1.equals(skewedUserid);
            }
        }).flatMapToPair(new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Iterable<Tuple2<String, Row>> call(
                    Tuple2<Long, Row> tuple) throws Exception {
                Random random = new Random();
                List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>();
                for(int i = 0; i < 100; i  ) {
                    list.add(new Tuple2<String, Row>(i   "_"   tuple._1, tuple._2));
                }
                return list;
            }
              
        });
 
// 将rdd1中分拆出来的导致倾斜的key的独立rdd,每条数据都打上100以内的随机前缀。
// 然后将这个rdd1中分拆出来的独立rdd,与上面rdd2中分拆出来的独立rdd,进行join。
JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD1 = skewedRDD.mapToPair(
        new PairFunction<Tuple2<Long,String>, String, String>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, String> call(Tuple2<Long, String> tuple)
                    throws Exception {
                Random random = new Random();
                int prefix = random.nextInt(100);
                return new Tuple2<String, String>(prefix   "_"   tuple._1, tuple._2);
            }
        })
        .join(skewedUserid2infoRDD)
        .mapToPair(new PairFunction<Tuple2<String,Tuple2<String,Row>>, Long, Tuple2<String, Row>>() {
                        private static final long serialVersionUID = 1L;
                        @Override
                        public Tuple2<Long, Tuple2<String, Row>> call(
                            Tuple2<String, Tuple2<String, Row>> tuple)
                            throws Exception {
                            long key = Long.valueOf(tuple._1.split("_")[1]);
                            return new Tuple2<Long, Tuple2<String, Row>>(key, tuple._2);
                        }
                    });
 
// 将rdd1中分拆出来的包含普通key的独立rdd,直接与rdd2进行join。
JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD2 = commonRDD.join(rdd2);
 
// 将倾斜key join后的结果与普通key join后的结果,uinon起来。
// 就是最终的join结果。
JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD = joinedRDD1.union(joinedRDD2);
随机前缀和扩容RDD进行join

方案适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。

方案实现思路: 该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。 然后将该RDD的每条数据都打上一个n以内的随机前缀。 同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。 最后将两个处理后的RDD进行join即可。

方案实现原理:将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

方案优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。

方案缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。

方案实践经验:曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。

代码语言:java复制
// 首先将其中一个key分布相对较为均匀的RDD膨胀100倍。
JavaPairRDD<String, Row> expandedRDD = rdd1.flatMapToPair(
        new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Iterable<Tuple2<String, Row>> call(Tuple2<Long, Row> tuple)
                    throws Exception {
                List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>();
                for(int i = 0; i < 100; i  ) {
                    list.add(new Tuple2<String, Row>(0   "_"   tuple._1, tuple._2));
                }
                return list;
            }
        });
  
// 其次,将另一个有数据倾斜key的RDD,每条数据都打上100以内的随机前缀。
JavaPairRDD<String, String> mappedRDD = rdd2.mapToPair(
        new PairFunction<Tuple2<Long,String>, String, String>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, String> call(Tuple2<Long, String> tuple)
                    throws Exception {
                Random random = new Random();
                int prefix = random.nextInt(100);
                return new Tuple2<String, String>(prefix   "_"   tuple._1, tuple._2);
            }
        });
  
// 将两个处理后的RDD进行join即可。
JavaPairRDD<String, Tuple2<String, Row>> joinedRDD = mappedRDD.join(expandedRDD);

参考

1(https://tech.meituan.com/2014/02/12/hive-sql-to-mapreduce.html )

2(https://developer.aliyun.com/article/632206 )

3(https://tech.meituan.com/2016/05/12/spark-tuning-pro.html )

0 人点赞