(7) 互逆事件(对立事件): A ⋂ B = ∅ , A ⋃ B = Ω , A = B ˉ , B = A ˉ Abigcap B=varnothing ,Abigcup B=Omega ,A=bar{B},B=bar{A} A⋂B=∅,A⋃B=Ω,A=Bˉ,B=Aˉ 2.运算律 (1) 交换律: A ⋃ B = B ⋃ A , A ⋂ B = B ⋂ A Abigcup B=Bbigcup A,Abigcap B=Bbigcap A A⋃B=B⋃A,A⋂B=B⋂A (2) 结合律: ( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) (Abigcup B)bigcup C=Abigcup (Bbigcup C) (A⋃B)⋃C=A⋃(B⋃C) (3) 分配律: ( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C ) (Abigcap B)bigcap C=Abigcap (Bbigcap C) (A⋂B)⋂C=A⋂(B⋂C) 3.德centerdot 摩根律
4.完全事件组
A 1 A 2 ⋯ A n {{A}_{1}}{{A}_{2}}cdots {{A}_{n}} A1A2⋯An两两互斥,且和事件为必然事件,即{{A}{i}}bigcap {{A}{j}}=varnothing, ine j ,underset{i=1}{overset{n}{mathop bigcup }},=Omega
5.概率的基本公式 (1)条件概率: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=frac{P(AB)}{P(A)} P(B∣A)=P(A)P(AB),表示 A A A发生的条件下, B B B发生的概率。 (2)全概率公式: P(A)=sumlimits_{i=1}^{n}{P(A|{{B}{i}})P({{B}{i}}),{{B}{i}}{{B}{j}}}=varnothing ,ine j,underset{i=1}{overset{n}{mathop{bigcup }}},{{B}_{i}}=Omega (3) Bayes公式:
注:上述公式中事件
的个数可为可列个。
(4)乘法公式:
6.事件的独立性
(1)
与
相互独立
(2)
,
,
两两独立
;
;
;
(3)
,
,
相互独立
;
;
;
7.独立重复试验
将某试验独立重复 n n n次,若每次实验中事件A发生的概率为 p p p,则 n n n次试验中 A A A发生 k k k次的概率为: P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}} P(X=k)=Cnkpk(1−p)n−k 8.重要公式与结论 ( 1 ) P ( A ˉ ) = 1 − P ( A ) (1)P(bar{A})=1-P(A) (1)P(Aˉ)=1−P(A) ( 2 ) P ( A ⋃ B ) = P ( A ) P ( B ) − P ( A B ) (2)P(Abigcup B)=P(A) P(B)-P(AB) (2)P(A⋃B)=P(A) P(B)−P(AB) P ( A ⋃ B ⋃ C ) = P ( A ) P ( B ) P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) P ( A B C ) P(Abigcup Bbigcup C)=P(A) P(B) P(C)-P(AB)-P(BC)-P(AC) P(ABC) P(A⋃B⋃C)=P(A) P(B) P(C)−P(AB)−P(BC)−P(AC) P(ABC) ( 3 ) P ( A − B ) = P ( A ) − P ( A B ) (3)P(A-B)=P(A)-P(AB) (3)P(A−B)=P(A)−P(AB) ( 4 ) P ( A B ˉ ) = P ( A ) − P ( A B ) , P ( A ) = P ( A B ) P ( A B ˉ ) , (4)P(Abar{B})=P(A)-P(AB),P(A)=P(AB) P(Abar{B}), (4)P(ABˉ)=P(A)−P(AB),P(A)=P(AB) P(ABˉ), P ( A ⋃ B ) = P ( A ) P ( A ˉ B ) = P ( A B ) P ( A B ˉ ) P ( A ˉ B ) P(Abigcup B)=P(A) P(bar{A}B)=P(AB) P(Abar{B}) P(bar{A}B) P(A⋃B)=P(A) P(AˉB)=P(AB) P(ABˉ) P(AˉB) (5)条件概率 P ( ⋅ ∣ B ) P(centerdot |B) P(⋅∣B)满足概率的所有性质, 例如:. P ( A ˉ 1 ∣ B ) = 1 − P ( A 1 ∣ B ) P({{bar{A}}_{1}}|B)=1-P({{A}_{1}}|B) P(Aˉ1∣B)=1−P(A1∣B) P ( A 1 ⋃ A 2 ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ B ) − P ( A 1 A 2 ∣ B ) P({{A}_{1}}bigcup {{A}_{2}}|B)=P({{A}_{1}}|B) P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B) P(A1⋃A2∣B)=P(A1∣B) P(A2∣B)−P(A1A2∣B) P ( A 1 A 2 ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ A 1 B ) P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B) P(A1A2∣B)=P(A1∣B)P(A2∣A1B) (6)若 A 1 , A 2 , ⋯ , A n {{A}_{1}},{{A}_{2}},cdots ,{{A}_{n}} A1,A2,⋯,An相互独立,则 P ( ⋂ i = 1 n A i ) = ∏ i = 1 n P ( A i ) , P(bigcaplimits_{i=1}^{n}{{{A}_{i}}})=prodlimits_{i=1}^{n}{P({{A}_{i}})}, P(i=1⋂nAi)=i=1∏nP(Ai), P ( ⋃ i = 1 n A i ) = ∏ i = 1 n ( 1 − P ( A i ) ) P(bigcuplimits_{i=1}^{n}{{{A}_{i}}})=prodlimits_{i=1}^{n}{(1-P({{A}_{i}}))} P(i=1⋃nAi)=i=1∏n(1−P(Ai)) (7)互斥、互逆与独立性之间的关系: A A A与 B B B互逆 ⇒ Rightarrow ⇒ A A A与 B B B互斥,但反之不成立, A A A与 B B B互斥(或互逆)且均非零概率事件Rightarrow A A A与 B B B不独立. (8)若 A 1 , A 2 , ⋯ , A m , B 1 , B 2 , ⋯ , B n {{A}_{1}},{{A}_{2}},cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},cdots ,{{B}_{n}} A1,A2,⋯,Am,B1,B2,⋯,Bn相互独立,则 f ( A 1 , A 2 , ⋯ , A m ) f({{A}_{1}},{{A}_{2}},cdots ,{{A}_{m}}) f(A1,A2,⋯,Am)与 g ( B 1 , B 2 , ⋯ , B n ) g({{B}_{1}},{{B}_{2}},cdots ,{{B}_{n}}) g(B1,B2,⋯,Bn)也相互独立,其中 f ( ⋅ ) , g ( ⋅ ) f(centerdot ),g(centerdot ) f(⋅),g(⋅)分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.