1. Hadoop的HA机制
前言:正式引入HA机制是从hadoop2.0开始,之前的版本中没有HA机制
1.1. HA的运作机制
(1)hadoop-HA集群运作机制介绍
所谓HA,即高可用(7*24小时不中断服务)
实现高可用最关键的是消除单点故障
hadoop-ha严格来说应该分成各个组件的HA机制——HDFS的HA、YARN的HA
(2)HDFS的HA机制详解
通过双namenode消除单点故障
双namenode协调工作的要点:
A、元数据管理方式需要改变:
内存中各自保存一份元数据
Edits日志只能有一份,只有Active状态的namenode节点可以做写操作
两个namenode都可以读取edits
共享的edits放在一个共享存储中管理(qjournal和NFS两个主流实现)
B、需要一个状态管理功能模块
实现了一个zkfailover,常驻在每一个namenode所在的节点
每一个zkfailover负责监控自己所在namenode节点,利用zk进行状态标识
当需要进行状态切换时,由zkfailover来负责切换
切换时需要防止brain split现象的发生
1.2. HDFS-HA图解
2. 主机规划
主机名称 | 外网IP | 内网IP | 操作系统 | 备注 | 安装软件 | 运行进程 |
---|---|---|---|---|---|---|
mini01 | 10.0.0.111 | 172.16.1.111 | CentOS 7.4 | ssh port:22 | jdk、hadoop | NameNode、DFSZKFailoverController(zkfc) |
mini02 | 10.0.0.112 | 172.16.1.112 | CentOS 7.4 | ssh port:22 | jdk、hadoop | NameNode、DFSZKFailoverController(zkfc) |
mini03 | 10.0.0.113 | 172.16.1.113 | CentOS 7.4 | ssh port:22 | jdk、hadoop、zookeeper | ResourceManager |
mini04 | 10.0.0.114 | 172.16.1.114 | CentOS 7.4 | ssh port:22 | jdk、hadoop、zookeeper | ResourceManager |
mini05 | 10.0.0.115 | 172.16.1.115 | CentOS 7.4 | ssh port:22 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
mini06 | 10.0.0.116 | 172.16.1.116 | CentOS 7.4 | ssh port:22 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
mini07 | 10.0.0.117 | 172.16.1.117 | CentOS 7.4 | ssh port:22 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
注意:针对HA模式,就不需要SecondaryNameNode了,因为STANDBY状态的namenode会负责做checkpoint
Linux添加hosts信息,保证每台都可以相互ping通
[root@mini01 ~]# cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.0.0.111 mini01 10.0.0.112 mini02 10.0.0.113 mini03 10.0.0.114 mini04 10.0.0.115 mini05 10.0.0.116 mini06 10.0.0.117 mini07
Windows的hosts文件修改
# 文件位置C:WindowsSystem32driversetc 在hosts中追加如下内容 ………………………………………… 10.0.0.111 mini01 10.0.0.112 mini02 10.0.0.113 mini03 10.0.0.114 mini04 10.0.0.115 mini05 10.0.0.116 mini06 10.0.0.117 mini07
3. 添加用户账号
# 使用一个专门的用户,避免直接使用root用户 # 添加用户、指定家目录并指定用户密码 useradd -d /app yun && echo '123456' | /usr/bin/passwd --stdin yun # sudo提权 echo "yun ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers # 让其它普通用户可以进入该目录查看信息 chmod 755 /app/
4. 实现yun用户免秘钥登录
要求:根据规划实现 mini01 到 mini01、mini02、mini03、mini04、mini05、mini06、mini07 免秘钥登录 实现 mini02 到 mini01、mini02、mini03、mini04、mini05、mini06、mini07 免秘钥登录 实现 mini03 到 mini01、mini02、mini03、mini04、mini05、mini06、mini07 免秘钥登录 实现 mini04 到 mini01、mini02、mini03、mini04、mini05、mini06、mini07 免秘钥登录 实现 mini05 到 mini01、mini02、mini03、mini04、mini05、mini06、mini07 免秘钥登录 实现 mini06 到 mini01、mini02、mini03、mini04、mini05、mini06、mini07 免秘钥登录 实现 mini07 到 mini01、mini02、mini03、mini04、mini05、mini06、mini07 免秘钥登录
# 可以使用ip也可以是hostname 但是由于我们计划使用的是 hostname 方式交互,所以使用hostname # 同时hostname方式分发,可以通过hostname远程登录,也可以IP远程登录
具体过程就不多说了,请参见 https://www.linuxidc.com/Linux/2018-08/153353.htm
5. Jdk【java8】
具体过程就不多说了,请参见 https://www.linuxidc.com/Linux/2018-08/153353.htm
6. Zookeeper部署
根据规划zookeeper部署在mini03、mini04、mini05、mini06、mini07上
6.1. 配置信息
[yun@mini03 conf]$ pwd /app/zookeeper/conf [yun@mini03 conf]$ vim zoo.cfg #单个客户端与单台服务器之间的连接数的限制,是ip级别的,默认是60,如果设置为0,那么表明不作任何限制。 maxClientCnxns=1500 # The number of milliseconds of each tick tickTime=2000 # The number of ticks that the initial # synchronization phase can take initLimit=10 # The number of ticks that can pass between # sending a request and getting an acknowledgement syncLimit=5 # the directory where the snapshot is stored. # do not use /tmp for storage, /tmp here is just # example sakes. # dataDir=/tmp/zookeeper dataDir=/app/bigdata/zookeeper/data # the port at which the clients will connect clientPort=2181 # # Be sure to read the maintenance section of the # administrator guide before turning on autopurge. # # http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance # # The number of snapshots to retain in dataDir #autopurge.snapRetainCount=3 # Purge task interval in hours # Set to "0" to disable auto purge feature #autopurge.purgeInterval=1
# leader和follow通信端口和投票选举端口 server.3=mini03:2888:3888 server.4=mini04:2888:3888 server.5=mini05:2888:3888 server.6=mini06:2888:3888 server.7=mini07:2888:3888
6.2. 添加myid文件
[yun@mini03 data]$ pwd /app/bigdata/zookeeper/data [yun@mini03 data]$ vim myid # 其中mini03的myid 为3;mini04的myid 为4;mini05的myid 为5;mini06的myid 为6;mini07的myid 为7 3
6.3. 启动zk服务
# 依次在启动mini03、mini04、mini05、mini06、mini07 zk服务 [yun@mini03 ~]$ cd zookeeper/bin/ [yun@mini03 bin]$ pwd /app/zookeeper/bin [yun@mini03 bin]$ ll total 56 -rwxr-xr-x 1 yun yun 238 Oct 1 2012 README.txt -rwxr-xr-x 1 yun yun 1909 Oct 1 2012 zkCleanup.sh -rwxr-xr-x 1 yun yun 1049 Oct 1 2012 zkCli.cmd -rwxr-xr-x 1 yun yun 1512 Oct 1 2012 zkCli.sh -rwxr-xr-x 1 yun yun 1333 Oct 1 2012 zkEnv.cmd -rwxr-xr-x 1 yun yun 2599 Oct 1 2012 zkEnv.sh -rwxr-xr-x 1 yun yun 1084 Oct 1 2012 zkServer.cmd -rwxr-xr-x 1 yun yun 5467 Oct 1 2012 zkServer.sh -rw-rw-r-- 1 yun yun 17522 Jun 28 21:01 zookeeper.out [yun@mini03 bin]$ ./zkServer.sh start JMX enabled by default Using config: /app/zookeeper/bin/../conf/zoo.cfg Starting zookeeper ... STARTED
6.4. 查询运行状态
# 其中mini03、mini04、mini06、mini07状态如下 [yun@mini03 bin]$ ./zkServer.sh status JMX enabled by default Using config: /app/zookeeper/bin/../conf/zoo.cfg Mode: follower
# 其中mini05 状态如下 [yun@mini05 bin]$ ./zkServer.sh status JMX enabled by default Using config: /app/zookeeper/bin/../conf/zoo.cfg Mode: leader
PS:4个follower 1个leader
7. Hadoop部署与配置修改
注意:每台机器的Hadoop以及配置相同
7.1. 部署
[yun@mini01 software]$ pwd /app/software [yun@mini01 software]$ ll total 194152 -rw-r--r-- 1 yun yun 198811365 Jun 8 16:36 CentOS-7.4_hadoop-2.7.6.tar.gz [yun@mini01 software]$ tar xf CentOS-7.4_hadoop-2.7.6.tar.gz [yun@mini01 software]$ mv hadoop-2.7.6/ /app/ [yun@mini01 software]$ cd [yun@mini01 ~]$ ln -s hadoop-2.7.6/ hadoop [yun@mini01 ~]$ ll total 4 lrwxrwxrwx 1 yun yun 13 Jun 9 16:21 hadoop -> hadoop-2.7.6/ drwxr-xr-x 9 yun yun 149 Jun 8 16:36 hadoop-2.7.6 lrwxrwxrwx 1 yun yun 12 May 26 11:18 jdk -> jdk1.8.0_112 drwxr-xr-x 8 yun yun 255 Sep 23 2016 jdk1.8.0_112
7.2. 环境变量
[root@mini01 profile.d]# pwd /etc/profile.d [root@mini01 profile.d]# vim hadoop.sh export HADOOP_HOME="/app/hadoop" export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH [root@mini01 profile.d]# source /etc/profile # 生效
7.3. core-site.xml
[yun@mini01 hadoop]$ pwd /app/hadoop/etc/hadoop [yun@mini01 hadoop]$ vim core-site.xml <?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet type="text/xsl" href="https://www.linuxidc.com/Linux/2018-08/configuration.xsl"?> <!-- …………………… -->
<!-- Put site-specific property overrides in this file. -->
<configuration> <!-- 指定hdfs的nameservice为bi --> <property> <name>fs.defaultFS</name> <value>hdfs://bi/</value> </property>
<!-- 指定hadoop临时目录 --> <property> <name>hadoop.tmp.dir</name> <value>/app/hadoop/tmp</value> </property>
<!-- 指定zookeeper地址 --> <property> <name>ha.zookeeper.quorum</name> <value>mini03:2181,mini04:2181,mini05:2181,mini06:2181,mini07:2181</value> </property>
</configuration>
7.4. hdfs-site.xml
[yun@mini01 hadoop]$ pwd /app/hadoop/etc/hadoop [yun@mini01 hadoop]$ vim hdfs-site.xml <?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet type="text/xsl" href="https://www.linuxidc.com/Linux/2018-08/configuration.xsl"?> <!-- …………………… -->
<!-- Put site-specific property overrides in this file. -->
<configuration> <!--指定hdfs的nameservice为bi,需要和core-site.xml中的保持一致 --> <property> <name>dfs.nameservices</name> <value>bi</value> </property>
<!-- bi下面有两个NameNode,分别是nn1,nn2 --> <property> <name>dfs.ha.namenodes.bi</name> <value>nn1,nn2</value> </property>
<!-- nn1的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.bi.nn1</name> <value>mini01:9000</value> </property> <!-- nn1的http通信地址 --> <property> <name>dfs.namenode.http-address.bi.nn1</name> <value>mini01:50070</value> </property>
<!-- nn2的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.bi.nn2</name> <value>mini02:9000</value> </property> <!-- nn2的http通信地址 --> <property> <name>dfs.namenode.http-address.bi.nn2</name> <value>mini02:50070</value> </property>
<!-- 指定NameNode的edits元数据在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://mini05:8485;mini06:8485;mini07:8485/bi</value> </property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/app/hadoop/journaldata</value> </property>
<!-- 开启NameNode失败自动切换 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property>
<!-- 配置失败自动切换实现方式 --> <property> <name>dfs.client.failover.proxy.provider.bi</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行--> <!-- 其中shell(/bin/true) 表示可执行一个脚本 比如 shell(/app/yunwei/hadoop_fence.sh) --> <property> <name>dfs.ha.fencing.methods</name> <value> sshfence shell(/bin/true) </value> </property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 --> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/app/.ssh/id_rsa</value> </property>
<!-- 配置sshfence隔离机制超时时间 单位:毫秒 --> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>30000</value> </property>
</configuration>
7.5. mapred-site.xml
[yun@mini01 hadoop]$ pwd /app/hadoop/etc/hadoop [yun@mini01 hadoop]$ cp -a mapred-site.xml.template mapred-site.xml [yun@mini01 hadoop]$ vim mapred-site.xml <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="https://www.linuxidc.com/Linux/2018-08/configuration.xsl"?> <!-- …………………… -->
<!-- Put site-specific property overrides in this file. -->
<configuration> <!-- 指定mr框架为yarn方式 --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property>
</configuration>
7.6. yarn-site.xml
[yun@mini01 hadoop]$ pwd /app/hadoop/etc/hadoop [yun@mini01 hadoop]$ vim yarn-site.xml <?xml version="1.0"?> <!-- …………………… --> <configuration>
<!-- Site specific YARN configuration properties --> <!-- 开启RM高可用 --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property>
<!-- 指定RM的cluster id --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yrc</value> </property>
<!-- 指定RM的名字 --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property>
<!-- 分别指定RM的地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>mini03</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>mini04</value> </property>
<!-- 指定zk集群地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>mini03:2181,mini04:2181,mini05:2181,mini06:2181,mini07:2181</value> </property>
<!-- reduce 获取数据的方式 --> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property>
</configuration>
7.7. 修改slaves
slaves是指定子节点的位置,因为要在mini01上启动HDFS、在mini03启动yarn,所以mini01上的slaves文件指定的是datanode的位置,mini03上的slaves文件指定的是nodemanager的位置
[yun@mini01 hadoop]$ pwd /app/hadoop/etc/hadoop [yun@mini01 hadoop]$ vim slaves mini05 mini06 mini07
PS:改后配置后,将这些配置拷到其他Hadoop机器
8. 启动相关服务
注意:第一次启动时严格按照下面的步骤!!!!!!!
8.1. 启动zookeeper集群
前面已经启动了,这里就不说了
8.2. 启动journalnode
# 根据规划在mini05、mini06、mini07 启动 # 在第一次格式化的时候需要先启动journalnode 之后就不必了 [yun@mini05 ~]$ hadoop-daemon.sh start journalnode # 已经配置环境变量,所以不用进入到响应的目录 starting journalnode, logging to /app/hadoop-2.7.6/logs/hadoop-yun-journalnode-mini05.out [yun@mini05 ~]$ jps 1281 QuorumPeerMain 1817 Jps 1759 JournalNode
8.3. 格式化HDFS
# 在mini01上执行命令 [yun@mini01 ~]$ hdfs namenode -format 18/06/30 18:29:12 INFO namenode.NameNode: STARTUP_MSG: /************************************************************ STARTUP_MSG: Starting NameNode STARTUP_MSG: host = mini01/10.0.0.111 STARTUP_MSG: args = [-format] STARTUP_MSG: version = 2.7.6 STARTUP_MSG: classpath = ……………… STARTUP_MSG: build = Unknown -r Unknown; compiled by 'root' on 2018-06-08T08:30Z STARTUP_MSG: java = 1.8.0_112 ************************************************************/ 18/06/30 18:29:12 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT] 18/06/30 18:29:12 INFO namenode.NameNode: createNameNode [-format] Formatting using clusterid: CID-2385f26e-72e6-4935-aa09-47848b5ba4be 18/06/30 18:29:13 INFO namenode.FSNamesystem: No KeyProvider found. 18/06/30 18:29:13 INFO namenode.FSNamesystem: fsLock is fair: true 18/06/30 18:29:13 INFO namenode.FSNamesystem: Detailed lock hold time metrics enabled: false 18/06/30 18:29:13 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000 18/06/30 18:29:13 INFO blockmanagement.DatanodeManager: dfs.namenode.datanode.registration.ip-hostname-check=true 18/06/30 18:29:13 INFO blockmanagement.BlockManager: dfs.namenode.startup.delay.block.deletion.sec is set to 000:00:00:00.000 18/06/30 18:29:13 INFO blockmanagement.BlockManager: The block deletion will start around 2018 Jun 30 18:29:13 18/06/30 18:29:13 INFO util.GSet: Computing capacity for map BlocksMap 18/06/30 18:29:13 INFO util.GSet: VM type = 64-bit 18/06/30 18:29:13 INFO util.GSet: 2.0% max memory 966.7 MB = 19.3 MB 18/06/30 18:29:13 INFO util.GSet: capacity = 2^21 = 2097152 entries 18/06/30 18:29:13 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false 18/06/30 18:29:13 INFO blockmanagement.BlockManager: defaultReplication = 3 18/06/30 18:29:13 INFO blockmanagement.BlockManager: maxReplication = 512 18/06/30 18:29:13 INFO blockmanagement.BlockManager: minReplication = 1 18/06/30 18:29:13 INFO blockmanagement.BlockManager: maxReplicationStreams = 2 18/06/30 18:29:13 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000 18/06/30 18:29:13 INFO blockmanagement.BlockManager: encryptDataTransfer = false 18/06/30 18:29:13 INFO blockmanagement.BlockManager: maxNumBlocksToLog = 1000 18/06/30 18:29:13 INFO namenode.FSNamesystem: fsOwner = yun (auth:SIMPLE) 18/06/30 18:29:13 INFO namenode.FSNamesystem: supergroup = supergroup 18/06/30 18:29:13 INFO namenode.FSNamesystem: isPermissionEnabled = true 18/06/30 18:29:13 INFO namenode.FSNamesystem: Determined nameservice ID: bi 18/06/30 18:29:13 INFO namenode.FSNamesystem: HA Enabled: true 18/06/30 18:29:13 INFO namenode.FSNamesystem: Append Enabled: true 18/06/30 18:29:13 INFO util.GSet: Computing capacity for map INodeMap 18/06/30 18:29:13 INFO util.GSet: VM type = 64-bit 18/06/30 18:29:13 INFO util.GSet: 1.0% max memory 966.7 MB = 9.7 MB 18/06/30 18:29:13 INFO util.GSet: capacity = 2^20 = 1048576 entries 18/06/30 18:29:13 INFO namenode.FSDirectory: ACLs enabled? false 18/06/30 18:29:13 INFO namenode.FSDirectory: XAttrs enabled? true 18/06/30 18:29:13 INFO namenode.FSDirectory: Maximum size of an xattr: 16384 18/06/30 18:29:13 INFO namenode.NameNode: Caching file names occuring more than 10 times 18/06/30 18:29:13 INFO util.GSet: Computing capacity for map cachedBlocks 18/06/30 18:29:13 INFO util.GSet: VM type = 64-bit 18/06/30 18:29:13 INFO util.GSet: 0.25% max memory 966.7 MB = 2.4 MB 18/06/30 18:29:13 INFO util.GSet: capacity = 2^18 = 262144 entries 18/06/30 18:29:13 INFO namenode.FSNamesystem: dfs.namenode.safemode.threshold-pct = 0.9990000128746033 18/06/30 18:29:13 INFO namenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0 18/06/30 18:29:13 INFO namenode.FSNamesystem: dfs.namenode.safemode.extension = 30000 18/06/30 18:29:13 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.window.num.buckets = 10 18/06/30 18:29:13 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.num.users = 10 18/06/30 18:29:13 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.windows.minutes = 1,5,25 18/06/30 18:29:13 INFO namenode.FSNamesystem: Retry cache on namenode is enabled 18/06/30 18:29:13 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is 600000 millis 18/06/30 18:29:13 INFO util.GSet: Computing capacity for map NameNodeRetryCache 18/06/30 18:29:13 INFO util.GSet: VM type = 64-bit 18/06/30 18:29:13 INFO util.GSet: 0.029999999329447746% max memory 966.7 MB = 297.0 KB 18/06/30 18:29:13 INFO util.GSet: capacity = 2^15 = 32768 entries 18/06/30 18:29:14 INFO namenode.FSImage: Allocated new BlockPoolId: BP-1178102935-10.0.0.111-1530354554626 18/06/30 18:29:14 INFO common.Storage: Storage directory /app/hadoop/tmp/dfs/name has been successfully formatted. 18/06/30 18:29:14 INFO namenode.FSImageFormatProtobuf: Saving image file /app/hadoop/tmp/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression 18/06/30 18:29:14 INFO namenode.FSImageFormatProtobuf: Image file /app/hadoop/tmp/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 320 bytes saved in 0 seconds. 18/06/30 18:29:15 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0 18/06/30 18:29:15 INFO util.ExitUtil: Exiting with status 0 18/06/30 18:29:15 INFO namenode.NameNode: SHUTDOWN_MSG: /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at mini01/10.0.0.111 ************************************************************/
拷贝到mini02
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/app/hadoop/tmp,然后将/app/hadoop/tmp拷贝到mini02的/app/hadoop/下。 # 方法1: [yun@mini01 hadoop]$ pwd /app/hadoop [yun@mini01 hadoop]$ scp -r tmp/ yun@mini02:/app/hadoop VERSION 100% 202 189.4KB/s 00:00 seen_txid 100% 2 1.0KB/s 00:00 fsimage_0000000000000000000.md5 100% 62 39.7KB/s 00:00 fsimage_0000000000000000000 100% 320 156.1KB/s 00:00
##########################3 # 方法2:##也可以这样,建议hdfs namenode -bootstrapStandby # 不过需要mini02的Hadoop起来才行
8.4. 格式化ZKFC
#在mini01上执行一次即可 [yun@mini01 ~]$ hdfs zkfc -formatZK 18/06/30 18:54:30 INFO tools.DFSZKFailoverController: Failover controller configured for NameNode NameNode at mini01/10.0.0.111:9000 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:zookeeper.version=3.4.6-1569965, built on 02/20/2014 09:09 GMT 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:host.name=mini01 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:java.version=1.8.0_112 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:java.vendor=Oracle Corporation 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:java.home=/app/jdk1.8.0_112/jre 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:java.class.path=…………………… 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:java.library.path=/app/hadoop-2.7.6/lib/native 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:java.io.tmpdir=/tmp 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:java.compiler=<NA> 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:os.name=Linux 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:os.arch=amd64 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:os.version=3.10.0-693.el7.x86_64 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:user.name=yun 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:user.home=/app 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Client environment:user.dir=/app/hadoop-2.7.6 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Initiating client connection, connectString=mini03:2181,mini04:2181,mini05:2181,mini06:2181,mini07:2181 sessionTimeout=5000 watcher=org.apache.hadoop.ha.ActiveStandbyElector$WatcherWithClientRef@7f3b84b8 18/06/30 18:54:30 INFO zookeeper.ClientCnxn: Opening socket connection to server mini04/10.0.0.114:2181. Will not attempt to authenticate using SASL (unknown error) 18/06/30 18:54:30 INFO zookeeper.ClientCnxn: Socket connection established to mini04/10.0.0.114:2181, initiating session 18/06/30 18:54:30 INFO zookeeper.ClientCnxn: Session establishment complete on server mini04/10.0.0.114:2181, sessionid = 0x4644fff9cb80000, negotiated timeout = 5000 18/06/30 18:54:30 INFO ha.ActiveStandbyElector: Session connected. 18/06/30 18:54:30 INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/bi in ZK. 18/06/30 18:54:30 INFO zookeeper.ZooKeeper: Session: 0x4644fff9cb80000 closed 18/06/30 18:54:30 INFO zookeeper.ClientCnxn: EventThread shut down
8.5. 启动HDFS
# 在mini01上执行 [yun@mini01 ~]$ start-dfs.sh Starting namenodes on [mini01 mini02] mini01: starting namenode, logging to /app/hadoop-2.7.6/logs/hadoop-yun-namenode-mini01.out mini02: starting namenode, logging to /app/hadoop-2.7.6/logs/hadoop-yun-namenode-mini02.out mini07: starting datanode, logging to /app/hadoop-2.7.6/logs/hadoop-yun-datanode-mini07.out mini06: starting datanode, logging to /app/hadoop-2.7.6/logs/hadoop-yun-datanode-mini06.out mini05: starting datanode, logging to /app/hadoop-2.7.6/logs/hadoop-yun-datanode-mini05.out Starting journal nodes [mini05 mini06 mini07] mini07: journalnode running as process 1691. Stop it first. mini06: journalnode running as process 1665. Stop it first. mini05: journalnode running as process 1759. Stop it first. Starting ZK Failover Controllers on NN hosts [mini01 mini02] mini01: starting zkfc, logging to /app/hadoop-2.7.6/logs/hadoop-yun-zkfc-mini01.out mini02: starting zkfc, logging to /app/hadoop-2.7.6/logs/hadoop-yun-zkfc-mini02.out
8.6. 启动YARN
#####注意#####:是在mini03上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题 # 因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动 [yun@mini03 ~]$ start-yarn.sh starting yarn daemons starting resourcemanager, logging to /app/hadoop-2.7.6/logs/yarn-yun-resourcemanager-mini03.out mini06: starting nodemanager, logging to /app/hadoop-2.7.6/logs/yarn-yun-nodemanager-mini06.out mini07: starting nodemanager, logging to /app/hadoop-2.7.6/logs/yarn-yun-nodemanager-mini07.out mini05: starting nodemanager, logging to /app/hadoop-2.7.6/logs/yarn-yun-nodemanager-mini05.out
################################ # 在mini04启动 resourcemanager [yun@mini04 ~]$ yarn-daemon.sh start resourcemanager # 也可用start-yarn.sh starting resourcemanager, logging to /app/hadoop-2.7.6/logs/yarn-yun-resourcemanager-mini04.out
8.7. 启动说明
# 第一次启动的时候请严格按照上面的步骤【第一次涉及格式化问题】
# 第二次以及之后,步骤为: 启动zookeeper、HDFS、YARN
9. 浏览访问
9.1. Hdfs访问
9.1.1. 正常情况访问
http://mini01:50070
http://mini02:50070
9.1.2. mini01挂了Active自动切换
# mini01操作 [yun@mini01 ~]$ jps 3584 DFSZKFailoverController 3283 NameNode 5831 Jps [yun@mini01 ~]$ kill 3283 [yun@mini01 ~]$ jps 3584 DFSZKFailoverController 5893 Jps
Namenode挂了所以mini01不能访问 http://mini02:50070
可见Hadoop已经切换过去了,之后mini01即使起来了,状态也只能为standby 。
9.2. Yarn访问
http://mini03:8088
http://mini04:8088 会直接跳转到http://mini03:8088/
# 该图从其他地方截取,所以不怎么匹配
# Linux下访问 [yun@mini01 ~]$ curl mini04:8088 This is standby RM. The redirect url is: http://mini03:8088/
HA完毕
10. 集群运维测试
10.1. Haadmin与状态切换管理
[yun@mini01 ~]$ hdfs haadmin Usage: haadmin [-transitionToActive [--forceactive] <serviceId>] [-transitionToStandby <serviceId>] [-failover [--forcefence] [--forceactive] <serviceId> <serviceId>] [-getServiceState <serviceId>] [-checkHealth <serviceId>] [-help <command>]
Generic options supported are -conf <configuration file> specify an application configuration file -D <property=value> use value for given property -fs <local|namenode:port> specify a namenode -jt <local|resourcemanager:port> specify a ResourceManager -files <comma separated list of files> specify comma separated files to be copied to the map reduce cluster -libjars <comma separated list of jars> specify comma separated jar files to include in the classpath. -archives <comma separated list of archives> specify comma separated archives to be unarchived on the compute machines.
The general command line syntax is bin/hadoop command [genericOptions] [commandOptions]
可以看到,状态操作的命令示例:
# 查看namenode工作状态 hdfs haadmin -getServiceState nn1
# 将standby状态namenode切换到active hdfs haadmin -transitionToActive nn1
# 将active状态namenode切换到standby hdfs haadmin -transitionToStandby nn2
10.2. 测试集群工作状态的一些指令
测试集群工作状态的一些指令 : hdfs dfsadmin -report 查看hdfs的各节点状态信息 hdfs haadmin -getServiceState nn1 # hdfs haadmin -getServiceState nn2 获取一个namenode节点的HA状态 hadoop-daemon.sh start namenode 单独启动一个namenode进程 hadoop-daemon.sh start zkfc 单独启动一个zkfc进程
10.3. Datanode动态上下线
Datanode动态上下线很简单,步骤如下:
a) 准备一台服务器,设置好环境
b) 部署hadoop的安装包,并同步集群配置
c) 联网上线,新datanode会自动加入集群
d) 如果是一次增加大批datanode,还应该做集群负载重均衡
10.4. 数据块的balance
启动balancer的命令:
start-balancer.sh -threshold 8
运行之后,会有Balancer进程出现:
上述命令设置了Threshold为8%,那么执行balancer命令的时候,首先统计所有DataNode的磁盘利用率的均值,然后判断如果某一个DataNode的磁盘利用率超过这个均值Threshold,那么将会把这个DataNode的block转移到磁盘利用率低的DataNode,这对于新节点的加入来说十分有用。Threshold的值为1到100之间,不显示的进行参数设置的话,默认是10。