每天给你送来NLP技术干货!
©作者 | SinGaln
排版 | PaperWeekly
前言
这是一篇来自于 ACL 2022 的关于跨语言的 NER 蒸馏模型。主要的过程还是两大块:1)Teacher Model 的训练;2)从 Teacher Model 蒸馏到 Student Model。采用了类似传统的 Soft 蒸馏方式,其中利用了多任务的方式对 Teacher Model 进行训练,一个任务是 NER 训练的任务,另一个是计算句对的相似性任务。整体思路还是采用了序列标注的方法,也是一个不错的 IDEA。
论文标题:
An Unsupervised Multiple-Task and Multiple-Teacher Model for Cross-lingual Named Entity Recognition
论文链接:
https://aclanthology.org/2022.acl-long.14.pdf
模型架构
2.1 Teacher Model
▲图1. Teacher Model训练架构
从上图可以明显的看出,Teacher Model 在进行训练时,采用了两种不同的 Labeled Data,一种是传统的单文本序列标注数据;另一种是句对类型的序列标注数据,然后通过三个独立的 Encoder 编码器进行特征抽取,一个任务就是我们常用的 NER 训练任务,也就是将 Encoder 编码器的输出经过一个线性层映射为标签数的特征矩阵,对映射的特征矩阵进行 softmax 归一化(这里笔者理解就是 NER 任务中的 BERT Softmax 模型),利用归一化后的特征矩阵与输入的 labels 进行 loss 计算,这里采用的是 CrossEntropyLoss。需要明确具体的是作者采用了 Multilingual BERT(也就是 mBert)作为编码器,计算公式如下:
首先利用 mBERT 提取输入文本序列的特征 ,这里的 表示的是:
将计算得到的文本序列隐藏向量经过一个线性变换后进行 softmax 归一化,计算如下:
以上就是 Teacher Model 的第一个任务,直接对标注序列进行 NER,并且采用交叉熵损失函数作为 loss_function,计算如下:
另外一个任务输入的为序列标注的句对数据,分别采用两个独立的Encoder编码器进行编码,得到的对应的 last_hidden_state,然后计算这两个输出的 cosine_similar,并且将其使用 进行激活,得到两个序列的相似度向量,计算如下:
这里也就是一个类似于 senetnce_similar 的操作,不同点在于这里计算的是序列中每个 Token 的相似度。通过对比句对序列标签得到一个 ,这里 时表示 (预测正确),反正的话,。到了计算相似度时,损失函数的设计就是基于 与 的,计算公式如下:
这里的 是 BinaryCrossEntropy。这里的 是句对序列所对应的标签通过比对得到的对比标签序列,也就是对于两个句子序列标签
来说,其生成的 ,通过这样的损失设计就可以很直观的理解 sim_loss 的计算了。
Tips:对于式(6)这里采用二元交叉熵(BCE)来计算 loss,笔者的理解是对输入句对中的每个 Token 的相似度进行一个二分类,其最终目标是使得具有相同标签的句对更加的靠近,也就是相似度更高。BCE 是用来评判一个二分类模型预测结果 的好坏程度的,通俗的讲,即对于标签 y 为 1 的情况,如果预测值 p(y) 趋近于 1,那么损失函数的值应当趋近于 0。反之,如果此时预测值 p(y) 趋近于 0,那么损失函数的值应当非常大,这非常符合 log 函数的性质。
Teacher Model 的设计总体上就是这样的,通过两个任务来增加 Teacher Model 的准确性和泛化性,对于实体识别来说,使用句对相似度的思想来拉近具有相同标签的 Token,并且结合传统的 NER 模型(mBERT softmax)可以使得模型的学习更加有指向性,不单单靠一个序列标签来指导模型学习,笔者任务这是一个不错的思路。
2.2 Student Model Distilled
▲图2. Teacher Model--Student Model Distilled
上面笔者分析了 Teacher Model 的训练,但这不是重点,笔者认为本篇文章在于作者在进行蒸馏时的想法是有亮点的。从蒸馏流程图可以看出来,作者使用的 Student Model 也是一个双塔 mBERT 模型作为编码器,输入的就是 Unlabeled Pairwise Data,其操作就是把 Teacher Model 的多任务直接进行统一,模型架构变化不大。蒸馏过程也是通用的蒸馏模式,Teacher Model 预测,Student Model 学习。
2.2.1 Teacher Model Inference
Teacher Model 预测这一部分没啥可说的,就是把无标签的数据输入到模型中,得到输出的 ner_logits 和 similar_logits。这也是蒸馏模型的常规操作了,这里需要注意的是在使用 Teacher Model 进行预测时,输入的数据是有讲究的,笔者对于这里的理解有两个:一个是是模型输入的是句对数据,只不过从这个句对数据中抽取一条输入到 Recognizer_teacher 中进行识别;另一个是作者采用了 BERT 模型的句对输入方式,输入的就是一个句对,只不过使用了 [SEP] 标签进行分隔,具体是哪一种笔者也不知道,理解了的读者可以告诉笔者一下。而且在 Teacher Model 训练时,笔者也不知道采用哪种数据输入方式。
2.2.2 Student Model Learning
Student Model 这一部分输入的就是 target 文本序列对,Student Model 的编码器也是一个双塔的 mBert 模型,分别对输入的 target 序列进行进行编码,这里也是进行一个 BERT Softmax 的基本操作,在此期间也使用了序列 Token 相似度计算的操作,具体的计算如下所示:
获得两个序列的 hidden_state 后进行一个线性计算,然后利用 softmax 进行归一化,得到每个 Token 预测的标签,计算如下:
这里也类似 Teacher Model 的计算方式,计算 target 序列间的 Token 相似度,计算如下所示:
当然,这里做的是蒸馏模型,所以对于输入到 Student Model 的序列对,也是 Teacher Model Inference 预测模型的输入,通过 Teacher Model 的预测计算得到一个 teacher_ner_logits 和 teacher_similar_logits,将 teacher_ner_logits 分别与 和 通过 CrossEntropyLoss 来计算 TS_ _Loss 和 TS_ _Loss,teacher_similar_logits 与 通过 计算 Similar_Loss,最终将几个 loss 进行相加作为 DistilldeLoss。
这里作者还对每个 TS_ _Loss,TS_ _Loss 分别赋予了权重 ,对 Similar_Loss 赋予了权重 ,对最终的 DistilldeLoss 赋予权重 ,这样的权重赋予能够使得 Student Model 从 Teacher Model 学习到的噪声减少。最终的 Loss 计算如下所示:
这里的权重 笔者认为是用来控制 Student Model 学习倾向的参数,首先对于 来说,由于 Student Model 输入的是 Unlabeled 数据,所以在进行蒸馏学习时,需要尽可能使得 Student Model 的输出的 student_ner_logits 来对齐 Teacher Model 预测输出的 teacher_ner_logits,由于不知道输入的无标签数据的数据分布,所以设置一个权重参数来对整个 Teacher Model 的预测标签进行加权,将各个无标签的输入序列看作一个数据量较少的类别。这里可以参考 在进行数据标签不平衡时使用权重系数对各个标签进行加权的操作。而且作者也分析了, 参数是一个随着 Teacher Model 输出而递增的一个参数。如下图所示:
▲图3. α参数与Weight和F1
作者在文章中也给出了参数 的计算方式,具体而言就是跟 Student Model 的序列编码有关,计算如下所示:
对于 参数而言,其加权的对象是 Similar_Loss,也就是对 Teacher Model 的相似度矩阵和Student Model 的相似度矩阵的交叉熵损失进行加权,参数的设置思路大致是当 Teacher Model 的 Similar_logits 接近 0 或 1 时, 参数就较大,接近 0.5 时就较小,其目的也是让 Student Model 学习更有用的信息,而不是一些似是而非的东西。其计算方式如下所示:
最后对于参数 来说,其作用是用来调整 NER 任务和 Similarity 任务一致性的参数,对于两个输入的 Token,希望 Student Model 从 Teacher Model 的两个任务中学习 Teacher Model 的 NER 任务的高预测准确率和 Similarity 任务远离 0.5 相似度的 Token 信息,反之亦然。其计算方式如下 所示:
实验结果
作者分别在 CoNLL 和 WiKiAnn 数据集上进行了实验,数据使用量如下图所示:
▲图4. CoNLL and WiKiAnn数据
作者还与现有的一些 SOTA 模型进行了对比,实验对比结果如下所示:
▲图5. 实验对比结果
从实验对比结果图可以看出,MTMT 模型在各方面都有不错的表现,对于中文上的表现稍微不如 BERT-f 模型,其他部分语言上有着大幅度的领先。
简单代码实现
代码语言:javascript复制#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @Time : 2022/5/30 13:59
# @Author : SinGaln
"""
An Unsupervised Multiple-Task and Multiple-Teacher Model for Cross-lingual Named Entity Recognition
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BertModel, BertPreTrainedModel, logging
logging.set_verbosity_error()
class TeacherNER(BertPreTrainedModel):
def __init__(self, config, num_labels):
"""
teacher模型是在标签数据上训练得到的,
主要分为三个encoder.
:param config:
:param num_labels:
"""
super(TeacherNER, self).__init__(config)
self.config = config
self.num_labels = num_labels
self.mbert = BertModel(config=config)
self.fc = nn.Linear(config.hidden_size, num_labels)
def forward(self, batch_token_input_ids, batch_attention_mask, batch_token_type_ids, batch_labels, training=True,
batch_pair_input_ids=None, batch_pair_attention_mask=None, batch_pair_token_type_ids=None,
batch_t=None):
"""
:param batch_token_input_ids: 单句子token序列
:param batch_attention_mask: 单句子attention_mask
:param batch_token_type_ids: 单句子token_type_ids
:param batch_pair_input_ids: 句对token序列
:param batch_pair_attention_mask: 句对attention_mask
:param batch_pair_token_type_ids: 句对token_type_ids
:return:
"""
# Recognizer Teacher
single_output = self.mbert(input_ids=batch_token_input_ids, attention_mask=batch_attention_mask,
token_type_ids=batch_token_type_ids).last_hidden_state
single_output = F.softmax(self.fc(single_output), dim=-1)
# Evaluator Teacher(类似双塔模型)
pair_output1 = self.mbert(input_ids=batch_pair_input_ids[0], attention_mask=batch_pair_attention_mask[0],
token_type_ids=batch_pair_token_type_ids[0]).last_hidden_state
pair_output2 = self.mbert(input_ids=batch_pair_input_ids[1], attention_mask=batch_pair_attention_mask[1],
token_type_ids=batch_pair_token_type_ids[1]).last_hidden_state
pair_output = torch.sigmoid(torch.cosine_similarity(pair_output1, pair_output2, dim=-1)) # 计算两个输出的cosine相似度
if training:
# 计算loss, 训练时采用平均loss作为模型最终的loss
loss1 = F.cross_entropy(single_output.view(-1, self.num_labels), batch_labels.view(-1))
loss2 = F.binary_cross_entropy(pair_output, batch_t.type(torch.float))
loss = loss1 loss2
return single_output, loss
else:
return single_output, pair_output
class StudentNER(BertPreTrainedModel):
def __init__(self, config, num_labels):
"""
student模型采用的也是一个双塔结构
:param config: mBert的配置文件
:param num_labels: 标签数量
"""
super(StudentNER, self).__init__(config)
self.config = config
self.num_labels = num_labels
self.mbert = BertModel(config=config)
self.fc1 = nn.Linear(config.hidden_size, num_labels)
self.fc2 = nn.Linear(config.hidden_size, num_labels)
def forward(self, batch_pair_input_ids, batch_pair_attention_mask, batch_pair_token_type_ids, batch_pair_labels,
teacher_logits, teacher_similar):
"""
:param batch_pair_input_ids: 句对token序列
:param batch_pair_attention_mask: 句对attention_mask
:param batch_pair_token_type_ids: 句对token_type_ids
:return:
"""
output1 = self.mbert(input_ids=batch_pair_input_ids[0], attention_mask=batch_pair_attention_mask[0],
token_type_ids=batch_pair_token_type_ids[0]).last_hidden_state
output2 = self.mbert(input_ids=batch_pair_input_ids[1], attention_mask=batch_pair_attention_mask[1],
token_type_ids=batch_pair_token_type_ids[1]).last_hidden_state
soft_output1, soft_output2 = self.fc1(output1), self.fc2(output2)
soft_logits1, soft_logits2 = F.softmax(soft_output1, dim=-1), F.softmax(soft_output2, dim=-1)
alpha1, alpha2 = torch.square(torch.max(input=soft_logits1, dim=-1)[0]).mean(), torch.square(
torch.max(soft_logits2, dim=-1)[0]).mean()
output_similar = torch.sigmoid(torch.cosine_similarity(soft_output1, soft_output2, dim=-1))
soft_similar = torch.sigmoid(torch.cosine_similarity(soft_logits1, soft_logits2, dim=-1))
beta = torch.square(2 * output_similar - 1).mean()
gamma = 1 - torch.abs(soft_similar - output_similar).mean()
# 计算蒸馏的loss
# teacher logits与student logits1 的loss
loss1 = alpha1 * (F.cross_entropy(soft_logits1, teacher_logits))
# teacher similar与student similar 的loss
loss2 = beta * (F.binary_cross_entropy(soft_similar, teacher_similar))
# teacher logits与student logits2 的loss
loss3 = alpha2 * (F.cross_entropy(soft_logits2, teacher_logits))
# final loss
loss = gamma * (loss1 loss2 loss3).mean()
return loss
if __name__ == "__main__":
from transformers import BertConfig
pretarin_path = "./pytorch_mbert_model"
batch_pair1_input_ids = torch.randint(1, 100, (2, 128))
batch_pair1_attention_mask = torch.ones_like(batch_pair1_input_ids)
batch_pair1_token_type_ids = torch.zeros_like(batch_pair1_input_ids)
batch_labels1 = torch.randint(1, 10, (2, 128))
batch_labels2 = torch.randint(1, 10, (2, 128))
# t(对比两个序列标签,相同为1,不同为0)
batch_t = torch.as_tensor(batch_labels1.numpy() == batch_labels2.numpy()).float()
batch_pair2_input_ids = torch.randint(1, 100, (2, 128))
batch_pair2_attention_mask = torch.ones_like(batch_pair2_input_ids)
batch_pair2_token_type_ids = torch.zeros_like(batch_pair2_input_ids)
batch_all_input_ids, batch_all_attention_mask, batch_all_token_type_ids, batch_all_labels = [], [], [], []
batch_all_labels.append(batch_labels1)
batch_all_labels.append(batch_labels2)
batch_all_input_ids.append(batch_pair1_input_ids)
batch_all_input_ids.append(batch_pair2_input_ids)
batch_all_attention_mask.append(batch_pair1_attention_mask)
batch_all_attention_mask.append(batch_pair2_attention_mask)
batch_all_token_type_ids.append(batch_pair1_token_type_ids)
batch_all_token_type_ids.append(batch_pair2_token_type_ids)
config = BertConfig.from_pretrained(pretarin_path)
# teacher模型训练
teacher_model = TeacherNER.from_pretrained(pretarin_path, config=config, num_labels=10)
outputs, loss = teacher_model(batch_token_input_ids=batch_pair1_input_ids,
batch_attention_mask=batch_pair1_attention_mask,
batch_token_type_ids=batch_pair1_token_type_ids, batch_labels=batch_labels1,
batch_pair_input_ids=batch_all_input_ids,
batch_pair_attention_mask=batch_all_attention_mask,
batch_pair_token_type_ids=batch_all_token_type_ids,
training=True, batch_t=batch_t)
# student 模型蒸馏
teacher_logits, teacher_similar = teacher_model(batch_token_input_ids=batch_pair1_input_ids,
batch_attention_mask=batch_pair1_attention_mask,
batch_token_type_ids=batch_pair1_token_type_ids,
batch_labels=batch_labels1,
batch_pair_input_ids=batch_all_input_ids,
batch_pair_attention_mask=batch_all_attention_mask,
batch_pair_token_type_ids=batch_all_token_type_ids,
training=False)
student_model = StudentNER.from_pretrained(pretarin_path, config=config, num_labels=10)
loss_all = student_model(batch_pair_input_ids=batch_all_input_ids,
batch_pair_attention_mask=batch_all_attention_mask,
batch_pair_token_type_ids=batch_all_token_type_ids,
batch_pair_labels=batch_all_labels, teacher_logits=teacher_logits,
teacher_similar=teacher_similar)
print(loss_all)
笔者自己实现的一部分代码,可能不是原论文作者想表达的意思,读者有疑问的话可以一起讨论一下^~^。