SQL API 读取Kafka数据实时写入Iceberg表
从Kafka中实时读取数据写入到Iceberg表中,操作步骤如下:
一、首先需要创建对应的Iceberg表
代码语言:javascript复制StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);
env.enableCheckpointing(1000);
//1.创建Catalog
tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH ("
"'type'='iceberg',"
"'catalog-type'='hadoop',"
"'warehouse'='hdfs://mycluster/flink_iceberg')");
//2.创建iceberg表 flink_iceberg_tbl
tblEnv.executeSql("create table hadoop_iceberg.iceberg_db.flink_iceberg_tbl3(id int,name string,age int,loc string) partitioned by (loc)");
二、编写代码读取Kafka数据实时写入Iceberg
代码语言:javascript复制public class ReadKafkaToIceberg {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);
env.enableCheckpointing(1000);
/**
* 1.需要预先创建 Catalog 及Iceberg表
*/
//1.创建Catalog
tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH ("
"'type'='iceberg',"
"'catalog-type'='hadoop',"
"'warehouse'='hdfs://mycluster/flink_iceberg')");
//2.创建iceberg表 flink_iceberg_tbl
// tblEnv.executeSql("create table hadoop_iceberg.iceberg_db.flink_iceberg_tbl3(id int,name string,age int,loc string) partitioned by (loc)");
//3.创建 Kafka Connector,连接消费Kafka中数据
tblEnv.executeSql("create table kafka_input_table("
" id int,"
" name varchar,"
" age int,"
" loc varchar"
") with ("
" 'connector' = 'kafka',"
" 'topic' = 'flink-iceberg-topic',"
" 'properties.bootstrap.servers'='node1:9092,node2:9092,node3:9092',"
" 'scan.startup.mode'='latest-offset',"
" 'properties.group.id' = 'my-group-id',"
" 'format' = 'csv'"
")");
//4.配置 table.dynamic-table-options.enabled
Configuration configuration = tblEnv.getConfig().getConfiguration();
// 支持SQL语法中的 OPTIONS 选项
configuration.setBoolean("table.dynamic-table-options.enabled", true);
//5.写入数据到表 flink_iceberg_tbl3
tblEnv.executeSql("insert into hadoop_iceberg.iceberg_db.flink_iceberg_tbl3 select id,name,age,loc from kafka_input_table");
//6.查询表数据
TableResult tableResult = tblEnv.executeSql("select * from hadoop_iceberg.iceberg_db.flink_iceberg_tbl3 /* OPTIONS('streaming'='true', 'monitor-interval'='1s')*/");
tableResult.print();
}
}
启动以上代码,向Kafka topic中生产如下数据:
代码语言:javascript复制1,zs,18,beijing
2,ls,19,shanghai
3,ww,20,beijing
4,ml,21,shanghai
我们可以看到控制台上有对应实时数据输出,查看对应的Icberg HDFS目录,数据写入成功。