图像去噪及其Matlab实现

2022-07-27 08:50:25 浏览数 (1)

图像去噪常用方法

图像去噪处理方法可分为空间域法变换域法两大类。

基于离散余弦变换的图像去噪

一般而言,我们认为图像的噪声在离散余弦变换结果中处在其高频部分,而高频部分的幅值一般很小,利用这一性质,就可以实现去噪。然而,同时会失去图像的部分细节。

代码语言:javascript复制
%读取图像
X=imread('0.jpg'); 
X=rgb2gray(X);
%读取图像尺寸
[m,n]=size(X); 
%给图像加噪
Xnoised=imnoise(X,'speckle',0.01); 
%输出加噪图像
subplot(121); 
imshow(Xnoised);
�T变换
Y=dct2(Xnoised); 
I=zeros(m,n);
%高频屏蔽
I(1:m/3,1:n/3)=1; 
Ydct=Y.*I;
%逆DCT变换
Y=uint8(idct2(Ydct)); 
%结果输出
subplot(122);
imshow(Y);

基于小波变换的图像去噪

小波去噪是小波变换较为成功的一类应用,其去噪的基本思路为:含噪图像-小波分解-分尺度去噪-小波逆变换-恢复图像。含噪信号经过预处理,然后利用小波变换把信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后再经过小波逆变换恢复检测信号。比基于傅里叶变换的去噪方法好。

代码语言:javascript复制
clear;                 
X=imread('0.jpg');            
X=rgb2gray(X);
figure
subplot(121);          
imshow(X);             
title('原始图像');                  
% 生成含噪图像并图示
X=double(X);
% 添加随机噪声
XX=X 8*randn(size(X));  
subplot(122);             
imshow(uint8(XX));              
title('含噪图像');       
%用小波函数coif2对图像XX进行2层
% 分解
[c,l]=wavedec2(XX,2,'coif2'); 
% 设置尺度向量
n=[1,2];                  
% 设置阈值向量 , 对高频小波系数进行阈值处理
p=[10.28,24.08]; 
nc=wthcoef2('h',c,l,n,p,'s');
% 图像的二维小波重构
X1=waverec2(nc,l,'coif2');   
figure
subplot(121);              
imshow(uint8(X1));                
%colormap(map);            
title('第一次消噪后的图像'); 
%再次对高频小波系数进行阈值处理
mc=wthcoef2('v',nc,l,n,p,'s');
% 图像的二维小波重构
X2=waverec2(mc,l,'coif2');  
subplot(122);            
imshow(uint8(X2));               
title('第二次消噪后的图像');

0 人点赞