看到一个文章,关于阿里巴巴公司根据截图查到泄露信息的具体员工的技术是什么,这个新闻有点老了,主要说一下背后的图片隐藏水印方法
一、水印原理
相对于空域方法,频域加盲水印的方法隐匿性更强,抵抗攻击能力更强。这类算法解水印困难,你不知道水印加在那个频段,而且受到攻击往往会破坏图像原本内容。
所谓盲水印,是指人感知不到的水印,包括看不到或听不见(没错,数字盲水印也能够用于音频)。其主要应用于音像作品、数字图书等,目的是,在不破坏原始作品的情况下,实现版权的防护与追踪。
添加数字盲水印的方法简单可分为空域方法和频域方法,这两种方法添加了冗余信息,但在编码和压缩情况不变的情况下,不会使原始图像大小产生变化(原来是10MB添加盲水印之后还是10MB)。
空域是指空间域,我们日常所见的图像就是空域。空域添加数字水印的方法是在空间域直接对图像操作(之所以说的这么绕,是因为不仅仅原图是空域,原图的差分等等也是空域),比如将水印(Matlab)直接叠加在图像上。
我们常说一个音有多高,这个音高是指频率;同样,图像灰度变化强烈的情况,也可以视为图像的频率。频域添加数字水印的方法,是指通过某种变换手段(傅里叶变换,离散余弦变换,小波变换等)将图像变换到频域(小波域),在频域对图像添加水印,再通过逆变换,将图像转换为空间域。相对于空域手段,频域手段隐匿性更强,抗攻击性更高。
所谓对水印的攻击,是指破坏水印,包括涂抹,剪切,放缩,旋转,压缩,加噪,滤波等。数字盲水印不仅仅要敏捷性高(不被人抓到),也要防御性强(抗打)。就像Dota的敏捷英雄往往是脆皮,数字盲水印的隐匿性和鲁棒性是互斥的。(鲁棒性是抗攻击性的学术名字)
二、频域制作数字盲水印的方法 信号是有频率的,一个信号可以看做是无数个不同阶的正弦信号的的叠加。
上式为傅里叶变换公式,f(t)是指时域信号(对于信号我们说时域,因为是与时间有关的,而图像我们往往说空域,与空间有关),F(w)是指频率。想要对傅里叶变换有深入了解的同学,建议看一下《信号与系统》或者《数字信号处理》的教材,里面系统介绍了傅里叶变换、快速傅里叶变换、拉普拉斯变换、z变换等。
简而言之,我们有方法将时域信号转换成为频域,同样,我们也能将二维信号(图像)转换为频域。在上文中提到,图像的频率是指图像灰度变换的强烈情况。
下面以傅里叶变换为例,介绍通过频域给图像添加数字盲水印的方法。注意,因为图像是离散信号,我们实际用的是离散傅里叶变换,在本文采用的都是二维快速傅里叶变换,快速傅里叶变换与离散时间傅里叶变换等价,下文中傅里叶变换均为二维快速傅里叶变换。
上图为叠加数字盲水印的基本流程。编码的目的有二,一是对水印加密,二控制水印能量的分布。
三、叠加数字盲水印的实验
给出一张200*400的原图
之后进行傅里叶变换,下图变换后的频域图像,
水印图为60*200
编码后的水印,编码方式采用随机序列编码,通过编码,水印分布到随机分布到各个频率,并且对水印进行了加密,水印注意是对称的。
将上图与原图的频谱叠加,可见图像的频谱已经发生了巨大的变化
之后,将叠加水印的频谱进行傅里叶逆变换,得到叠加数字水印后的图像,
肉眼几乎看不出叠加水印后的图像与原图的差异,这样,数字盲水印已经叠加到图像中去。 实际上,我们是把水印以噪声的形式添加到原图像中。 下图是在空域上的加水印图与原图的残差
可以看出,实际上上述方法是通过频域添加冗余信息(像噪声一样)。这些噪声遍布全图,在空域上并不容易破坏。
那么,为什么频谱发生了巨大的变化,而在空域却变化如此小呢?这是因为我们避开了图像的主要频率。下图是原图频谱,其能量主要集中在低频。
水印提取是水印叠加的逆过程,
经提取后,我们得到如下水印,问:为什么水印要对称呢?
四、源代码
代码语言:javascript复制clc;clear;close all;
alpha = 1;
%% read data
im = double(imread('3.png'))/255;
mark = double(imread('4.png'))/255;
figure, imshow(im),title('original image');
figure, imshow(mark),title('watermark');
%% encode mark
imsize = size(im);
%random
TH=zeros(imsize(1)*0.5,imsize(2),imsize(3));
TH1 = TH;
TH1(1:size(mark,1),1:size(mark,2),:) = mark;
M=randperm(0.5*imsize(1));
N=randperm(imsize(2));
save('encode.mat','M','N');
for i=1:imsize(1)*0.5
for j=1:imsize(2)
TH(i,j,:)=TH1(M(i),N(j),:);
end
end
% symmetric
mark_ = zeros(imsize(1),imsize(2),imsize(3));
mark_(1:imsize(1)*0.5,1:imsize(2),:)=TH;
for i=1:imsize(1)*0.5
for j=1:imsize(2)
mark_(imsize(1) 1-i,imsize(2) 1-j,:)=TH(i,j,:);
end
end
figure,imshow(mark_),title('encoded watermark');
%imwrite(mark_,'encoded watermark.jpg');
%% add watermark
FA=fft2(im);
figure,imshow(FA);title('spectrum of original image');
FB=FA alpha*double(mark_);
figure,imshow(FB); title('spectrum of watermarked image');
FAO=ifft2(FB);
figure,imshow(FAO); title('watermarked image');
%imwrite(uint8(FAO),'watermarked image.jpg');
RI = FAO-double(im);
figure,imshow(uint8(RI)); title('residual');
%imwrite(uint8(RI),'residual.jpg');
xl = 1:imsize(2);
yl = 1:imsize(1);
[xx,yy] = meshgrid(xl,yl);
figure, plot3(xx,yy,FA(:,:,1).^2 FA(:,:,2).^2 FA(:,:,3).^2),title('spectrum of original image');
figure, plot3(xx,yy,FB(:,:,1).^2 FB(:,:,2).^2 FB(:,:,3).^2),title('spectrum of watermarked image');
figure, plot3(xx,yy,FB(:,:,1).^2 FB(:,:,2).^2 FB(:,:,3).^2-FA(:,:,1).^2 FA(:,:,2).^2 FA(:,:,3).^2),title('spectrum of watermark');
%% extract watermark
FA2=fft2(FAO);
G=(FA2-FA)/alpha;
GG=G;
for i=1:imsize(1)*0.5
for j=1:imsize(2)
GG(M(i),N(j),:)=G(i,j,:);
end
end
for i=1:imsize(1)*0.5
for j=1:imsize(2)
GG(imsize(1) 1-i,imsize(2) 1-j,:)=GG(i,j,:);
end
end
figure,imshow(GG);title('extracted watermark');