keras conv(keras中文手册)

2022-07-28 19:35:50 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

Conv2D:图像空间的2维卷积

代码语言:javascript复制
keras.layers.Conv2D(filters, kernel_size,
 strides=(1, 1), 
 padding='valid', 
 data_format=None, 
 dilation_rate=(1, 1), 
 activation=None, 
 use_bias=True, 
 kernel_initializer='glorot_uniform', 
 bias_initializer='zeros', 
 kernel_regularizer=None, 
 bias_regularizer=None, 
 activity_regularizer=None, 
 kernel_constraint=None, 
 bias_constraint=None)

该层创建了一个卷积内核。如果将该图层用作模型中的第一个图层时,需要提供关键参数input_shape(整数元组),如input_shape=(128,128,3)对应于128×128 的RGB图片。

参数
  • filter:整数,卷积输出滤波器的数量。
  • kernel_size:2个整数或2个整数构成的元组/列表,指定2-dim卷积窗口的高度和宽度。可以是单个整数,以指定具有相同值的所有空间维度。
  • strides:2个整数或2个整数构成的元组/列表,指定沿着高度和宽度卷积的步长,如果是单个整数则指定所有的空间维度具有相同的值。
  • padding:有“valid”“same”
  • data_format:一个字符串,一个channels_lastchannels_first,前者对应的输入shape是(batch, height, width, channels),后者对应的shape是(batch, channels, height, width)。默认的是“channels_last”
  • dilation_rate:2个整数或2个整数构成的元组/列表,指定用于扩张卷积的扩张率。可以是单个整数,以指定具有相同值的所有空间维度。
  • activation:如“relu”、“sigmoid”等
  • use_bias:Boolean,该层是否使用偏置向量。
  • kernel_initializerkernel权重矩阵的初始化器
  • bias_initializer:偏置向量的初始化器
  • kernel_regularizer:应用于kernel权重矩阵的正则化函数
  • bias_regularizer:应用于偏置向量的正则化函数
  • activity_regularizer:应用于图层输出的正则化函数(它的“激活”)
  • kernel_constraint:应用于内核矩阵的约束函数
  • bias_constraint:应用于偏置向量的约束函数

Input shape

4D tensor with shape: (batch, channels, rows, cols) if data_format is “channels_first” or 4D tensor with shape: (batch, rows, cols, channels) if data_format is “channels_last”.

Output shape

4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format is “channels_first” or 4D tensor with shape: (batch, new_rows, new_cols, filters) if data_format is “channels_last”. rows and cols values might have changed due to padding.

详细内容请查看 原文档

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/128883.html原文链接:https://javaforall.cn

0 人点赞