利用AdaBoost对马疝病数据集(horseColic)进行分类预测

2022-07-29 19:57:57 浏览数 (1)

数据集[1] 提取码:krry

有关AdaBoost的详细介绍可以参考:【干货】集成学习(Ensemble Learning)原理总结

•先利用pandas读入csv文件,以DataFrame形式存储;然后将数据转成list(其实也可以直接操作,不过本人习惯这样做):

代码语言:javascript复制
data = np.array(data).tolist()

•分割数据,最后一列作为标签类别y,其余列为x:

代码语言:javascript复制
x = []; y = []
for i in range(len(data)):
     y.append(data[i][-1])
     del data[i][-1]
     x.append(data[i])

•训练模型

代码语言:javascript复制
clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=7, min_samples_leaf=7), n_estimators=100, algorithm='SAMME', learning_rate=0.95)
clf.fit(train_x, train_y)

•测试

代码语言:javascript复制
print(clf.score(test_x, test_y))

•完整代码:

代码语言:javascript复制
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
import pandas as pd
import numpy as np

def load_data(path):
    data = pd.read_csv(path, sep='t', names=[i for i in range(22)])
    data = np.array(data).tolist()
    x = []; y = []
    for i in range(len(data)):
        y.append(data[i][-1])
        del data[i][-1]
        x.append(data[i])

    x = np.array(x)
    y = np.array(y)

    return x, y

def AdaBoost():
    train_x, train_y = load_data('ensemble/horseColicTraining.txt')
    test_x, test_y = load_data('ensemble/horseColicTest.txt')
    #训练
    clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=7, min_samples_leaf=7), n_estimators=100, algorithm='SAMME', learning_rate=0.95)
    clf.fit(train_x, train_y)
    #测试
    print(clf.score(test_x, test_y))


if __name__ == '__main__':
    AdaBoost()

References

[1] 数据集: https://pan.baidu.com/s/14PM4zLUBr6BamLA-nEFujQ

0 人点赞