本文原链接:***什么是数据仓库,数仓有什么特点***
数据仓库,简称数仓,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。这里会介绍涉及的数仓数据开发技术,数仓的作用,数仓的特点等。
我简单的做一个比喻,数据仓库就是可以理解就是一个使用仓库,数据就是这个仓库的货物,而数据仓库的开发人员就是这个仓库的管理员,所以数据仓库就是一个怎么管理好数据,使得数据规范的放在仓库中,便于BI、AI等其他的使用数据的方面可以更好的使用仓库里面的数据,使得数据发挥出更好的价值,显而易见在一堆有规律,整齐的货物里面找一个东西,要比在没有整理的里面找更加有效率。
数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、集成性、稳定性和时变性。
数据仓库 ,由数据仓库之父比尔·恩门(Bill Inmon)于1990年提出,主要功能仍是将组织透过资讯系统之联机事务处理(OLTP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,做有系统的分析整理,以利各种分析方法如联机分析处理(OLAP)、数据挖掘(Data Mining)之进行,并进而支持如决策支持系统(DSS)、主管资讯系统(EIS)之创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟定及快速回应外在环境变动,帮助建构商业智能(BI)。
数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
数据仓库的特点:
数据仓库是面向主题的;操作型数据库的数据组织面向事务处理任务,而数据仓库中的数据是按照一定的主题域进行组织。主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。 数据仓库是集成的,数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出来,进行加工与集成,统一与综合之后才能进入数据仓库;
数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到当前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的操作主要是数据的查询; 数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好的满足商业商务处理的需求。稳定的数据以只读格式保存,且不随时间改变。 汇总的。操作性数据映射成决策可用的格式。 大容量。时间序列数据集合通常都非常大。 非规范化的。Dw数据可以是而且经常是冗余的。 元数据。将描述数据的数据保存起来。 数据源。数据来自内部的和外部的非集成操作系统。
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它并不是所谓的“大型数据库”。数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。
在具体的实践操作中,为了更好地为数据应用服务,也就是为了数据分析,数据报表的高效开发。数据仓库往往有如下几点特点:
效率足够高。
数据仓库的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好
的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。
数据质量。
数据仓库所提供的各种信息,肯定要准确的数据,但由于数据仓库流程通常分为多个步骤,包括数据清洗,装载,查询,展现等等,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。
扩展性。
之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,未来不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。
从上面的介绍中可以看出,数据仓库技术可以将企业多年积累的数据唤醒,不仅为企业管理好这些海量数据,而且挖掘数据潜在的价值,从而成为通信企业运营维护系统的亮点之一。
广义的说,基于数据仓库的决策支持系统由三个部件组成
:数据仓库技术,联机分析处理技术和数据挖掘技术,其中数据仓库技术是系统的核心,在这个系列后面的文章里,将围绕数据仓库技术,介绍现代数据仓库的主要技术和数据处理的主要步骤,讨论在通信运营维护系统中如何使用这些技术为运营维护带来帮助。
面向主题
操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。主题是与传统数据库的面向应用相对应的,是一个抽象概念,是在较高层次上将企业信息系统中的数据综合、归类并进行分析利用的抽象。每一个主题对应一个宏观的分析领域。数据仓库排除对于决策无用的数据,提供特定主题的简明视图。
需要数据仓库资料可以点击这个领取数据仓库(13)大数据数仓经典最值得阅读书籍推荐
参考文章:
数据仓库(01)什么是数据仓库,数仓有什么特点
数据仓库(02)数仓、大数据与传统数据库的区别
数据仓库(03)数仓建模之星型模型与维度建模
数据仓库(04)基于维度建模的数仓KimBall架构
数据仓库(05)数仓Kimball与Inmon架构的对比
数据仓库(06)数仓分层设计
数据仓库(07)数仓规范设计
数据仓库(08)数仓事实表和维度表技术
数据仓库(09)数仓缓慢变化维度数据的处理
数据仓库(10)数仓拉链表开发实例
数据仓库(11)什么是大数据治理,数据治理的范围是哪些
数据仓库(12)数据治理之数仓数据管理实践心得
数据仓库(13)大数据数仓经典最值得阅读书籍推荐