大家好,又见面了,我是你们的朋友全栈君。
1.osi七层模型:
7 | 应用层 | 例如HTTP、SMTP、SNMP、FTP、Telnet、SIP、SSH、NFS、RTSP、XMPP、Whois、ENRP |
---|---|---|
6 | 表示层 | 例如XDR、ASN.1、SMB、AFP、NCP |
5 | 会话层 | 例如ASAP、TLS、SSH、ISO 8327 / CCITT X.225、RPC、NetBIOS、ASP、Winsock、BSD sockets |
4 | 传输层 | 例如TCP、UDP、RTP、SCTP、SPX、ATP、IL |
3 | 网络层 | 例如IP、ICMP、IGMP、IPX、BGP、OSPF、RIP、IGRP、EIGRP、ARP、RARP、 X.25 |
2 | 数据链路层 | 例如以太网、令牌环、HDLC、帧中继、ISDN、ATM、IEEE 802.11、FDDI、PPP |
1 | 物理层 | 例如线路、无线电、光纤、信鸽 |
从上表可以看到我们平时说到的tcp位于osi的传输层,http位于应用层,既然二者位于不同的层,说明他们属于不同的‘事物’,响应的tcp与udp在同一层,也就是二者有不同的传输方法。
2,tcp/ip协议
下面摘自:https://www.cnblogs.com/bizhu/archive/2012/05/12/2497493.html
TCP/IP协议是一个协议簇。里面包括很多协议的。UDP只是其中的一个。之所以命名为TCP/IP协议,因为TCP,IP协议是两个很重要的协议,就用他两命名了。 TCP/IP协议集包括应用层,传输层,网络层,网络访问层。 其中应用层包括: 超文本传输协议(HTTP):万维网的基本协议. 文件传输(TFTP简单文件传输协议): 远程登录(Telnet),提供远程访问其它主机功能,它允许用户登录 internet主机,并在这台主机上执行命令. 网络管理(SNMP简单网络管理协议),该协议提供了监控网络设备的方法,以及配置管理,统计信息收集,性能管理及安全管理等. 域名系统(DNS),该系统用于在internet中将域名及其公共广播的网络节点转换成IP地址. 其次网络层包括: Internet协议(IP) Internet控制信息协议(ICMP) 地址解析协议(ARP) 反向地址解析协议(RARP) 最后说网络访问层:网络访问层又称作主机到网络层(host-to-network).网络访问层的功能包括IP地址与物理地址硬件的映射,以及将IP封装成帧.基于不同硬件类型的网络接口,网络访问层定义了和物理介质的连接.
3,tcp与http,UDP的区别
tcp协议要在传输数据前经过建立连接的三次握手,断开连接的四次握手,讲究安全的传输。而相反的udp协议则在数据传输前不需要建立连接,直接把抓取的数据扔到网络上。
TCP三次握手过程 1 主机A通过向主机B 发送一个含有同步序列号的标志位的数据段给主机B ,向主机B 请求建立连接,通过这个数据段, 主机A告诉主机B 两件事:我想要和你通信;你可以用哪个序列号作为起始数据段来回应我. 2 主机B 收到主机A的请求后,用一个带有确认应答(ACK)和同步序列号(SYN)标志位的数据段响应主机A,也告诉主机A两件事: 我已经收到你的请求了,你可以传输数据了;你要用哪佧序列号作为起始数据段来回应我 3 主机A收到这个数据段后,再发送一个确认应答,确认已收到主机B 的数据段:”我已收到回复,我现在要开始传输实际数据了 这样3次握手就完成了,主机A和主机B 就可以传输数据了. 3次握手的特点 没有应用层的数据 SYN这个标志位只有在TCP建产连接时才会被置1 握手完成后SYN标志位被置0 TCP建立连接要进行3次握手,而断开连接要进行4次 1 当主机A完成数据传输后,将控制位FIN置1,提出停止TCP连接的请求 2 主机B收到FIN后对其作出响应,确认这一方向上的TCP连接将关闭,将ACK置1 3 由B 端再提出反方向的关闭请求,将FIN置1 4 主机A对主机B的请求进行确认,将ACK置1,双方向的关闭结束. 由TCP的三次握手和四次断开可以看出,TCP使用面向连接的通信方式,大大提高了数据通信的可靠性,使发送数据端 和接收端在数据正式传输前就有了交互,为数据正式传输打下了可靠的基础 名词解释 ACK TCP报头的控制位之一,对数据进行确认.确认由目的端发出,用它来告诉发送端这个序列号之前的数据段 都收到了.比如,确认号为X,则表示前X-1个数据段都收到了,只有当ACK=1时,确认号才有效,当ACK=0时,确认号无效,这时会要求重传数据,保证数据的完整性. SYN 同步序列号,TCP建立连接时将这个位置1 FIN 发送端完成发送任务位,当TCP完成数据传输需要断开时,提出断开连接的一方将这位置1
TCP的包头结构: 源端口 16位 目标端口 16位 序列号 32位 回应序号 32位 TCP头长度 4位 reserved 6位 控制代码 6位 窗口大小 16位 偏移量 16位 校验和 16位 选项 32位(可选) 这样我们得出了TCP包头的最小长度,为20字节。 UDP(User Data Protocol,用户数据报协议) (1) UDP是一个非连接的协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。 (2) 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等,因此一台服务机可同时向多个客户机传输相同的消息。 (3) UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。 (4) 吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、源端和终端主机性能的限制。 (5)UDP使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态表(这里面有许多参数)。 (6)UDP是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界,因此,应用程序需要选择合适的报文大小。 我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。 UDP的包头结构: 源端口 16位 目的端口 16位 长度 16位 校验和 16位 小结TCP与UDP的区别: 1.基于连接与无连接; 2.对系统资源的要求(TCP较多,UDP少); 3.UDP程序结构较简单; 4.流模式与数据报模式 ; 5.TCP保证数据正确性,UDP可能丢包,TCP保证数据顺序,UDP不保证。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/106224.html原文链接:https://javaforall.cn