JVM如何判断对象无用

2022-08-09 13:06:08 浏览数 (1)

目录

  • 1、引用计数为0(已经不用了)
  • 2、可达性分析算法
    • GC Roots
    • 枚举根节点
    • 安全点-Safepoint
    • 安全区域-Safe Region

1、引用计数为0(已经不用了)

给对象添加一个引用计数器,有其他地方引用时这个计数器 1,引用失效时-1,为0时就可以删除掉了。但是它不能解决循环引用的问题

2、可达性分析算法

不可达的对象将暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:

  1. 如果对象在进行可达性分析后发现没有与 GC Roots 相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行 finalize() 方法。
  2. 当对象没有覆盖 finalize() 方法,或者 finalize() 方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”,直接进行第二次标记。
  3. 如果这个对象被判定为有必要执行 finalize() 方法,那么这个对象将会放置在一个叫做 F-Queue 的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的 Finalizer 线程去执行它。

这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,因为如果一个对象在 finalize() 方法中执行缓慢,将很可能会一直阻塞 F-Queue 队列,甚至导致整个内存回收系统崩溃。

GC Roots

在 Java 中可以作为 GC Roots 的对象有以下几种:

  • 虚拟机栈中引用的对象
  • 方法区类静态属性引用的对象
  • 方法区常量池引用的对象
  • 本地方法栈 JNI 引用的对象

其中虚拟机栈和本地方法栈都是线程私有的内存区域,只要线程没有终止,就能确保它们中引用的对象的存活。而方法区中类静态属性引用的对象是显然存活的。常量引用的对象在当前可能存活,因此,也可能是 GC roots 的一部分。

枚举根节点

从可达性分析中从GC Roots节点找引用链这个操作为例,可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的本地变量表)中,现在很多应用仅仅方法区就有数百兆,如果要逐个检查这里面的引用,那么必然会消耗很多时间。

另外,可达性分析对执行时间的敏感还体现在GC停顿上,因为这项分析工作必须在一个能确保一致性的快照中进行——这里“一致性”的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况,该点不满足的话分析结果准确性就无法得到保证。

这点是导致GC进行时必须停顿所有Java执行线程(Sun将这件事情称为“Stop The World”)的其中一个重要原因,即使是在号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。

当执行系统停顿下来后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得知哪些地方存放着对象引用。

在HotSpot的实现中,是使用一组称为OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。这样,GC在扫描时就可以直接得知这些信息了。

下面的代码清单3-3是HotSpot Client VM生成的一段String.hashCode()方法的本地代码,可以看到在0x026eb7a9处的call指令有OopMap记录,它指明了EBX寄存器和栈中偏移量为16的内存区域中各有一个普通对象指针(Ordinary Object Pointer)的引用,有效范围为从call指令开始直到0x026eb730(指令流的起始位置) 142(OopMap记录的偏移量)=0x026eb7be,即hlt指令为止。

OopMap数据结构存储GCRoot对象,但是随着系统的运行会导致OopMap会逐渐变大,所以也并不会存储所有的GCRoot对象,而是在一个所谓的安全点进行记录GCRoot对象。

安全点-Safepoint

实际上,HotSpot的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint)——即程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。

Safepoint的选定既不能太少以致于让GC等待时间太长,也不能过于频繁以致于过分增大运行时的负荷。

所以,安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的——因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这个原因而过长时间运行,“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有 这些功能的指令才会产生Safepoint。

对于Sefepoint,另一个需要考虑的问题是如何在GC发生时让所有线程(这里不包括执行 JNI调用的线程)都“跑”到最近的安全点上再停顿下来。

这里有两种方案可供选择:抢先式中断(Preemptive Suspension)主动式中断(Voluntary Suspension)

  • 抢先式中断不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件
  • 主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方
  • 下面代码清单中的test指令是HotSpot生成的轮询指令,当需要暂停线程时,虚拟机把0x160100的内存页设置为不可读,线程执行到test指令时就会产生一个自陷异常信号,在预先注册的异常处理器中暂停线程实现等待,这样一条汇编指令便完成安全点轮询和触发线程中断。

安全区域-Safe Region

使用Safepoint似乎已经完美地解决了如何进入GC的问题,但实际情况却并不一定。

Safepoint机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。

但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配CPU时间,典型的例子就是线程处 于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求,“走”到安全的地方去中断挂起,JVM也显然不太可能等待线程重新被分配CPU时间。对于这种情况,就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint

在线程执行到Safe Region中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时,就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。

jvm

0 人点赞