合约交易所系统搭建开发实现原理

2022-08-09 16:35:14 浏览数 (1)

  数字货币交易所系统开发,顾名思义就是进行某种信息及物品交易等等的场所或平台,数字货币现货期权合约交易所,所需要用的一个固定的地点或平台叫交易所。数字资产交易所,就是借助信息平台,实现产权信息共享、异地交易,统一协调。

  交易所撮合引擎需要满足以下三个要求:

  1.强大到变态的性能:交易所规模越大,并发的交易也就越多,撮合引擎性能的好坏,直接制约了交易所业务的发展。

  2.多种订单类型全兼容:常用的订单类型就包括限价单、市价单、止盈止损单等。

  3.合约功能的支持:现阶段的交易所行业中,合约交易已经几乎成了必备功能,合约的撮合实现相比现货要复杂许多,对技术的要求也会更高。

  huobipro=ccxt.huobipro({

  'apiKey':'',

  'secret':'',

  先使用ccxt获取交易所的实例,然后获取历史k线,得到的数据使用dataframe格式接收

  huobipro.fetch_ohlcv(symbol=symbol,limit=limit_num,timeframe=timeframe)

  然后利用pandas提供的函数计算MA,

  df['median_short']=df['close'].rolling(n_short,min_periods=1).mean()

  df['median_long']=df['close'].rolling(n_long,min_periods=1).mean()

  然后再找出买入卖出信号,

  #找出买入信号

  condition1=df['median_short']>df['median_long']#短均线上穿长均线

  condition2=df['median_short'].shift(1)<=df['median_long'].shift(1)

  df.loc[condition1&condition2,'signal']=1#产生买入信号的k线标记为1

  #找出卖出信号

  condition1=df['median_short']

  condition2=df['median_short'].shift(1)>=df['median_long'].shift(1)

  df.loc[condition1&condition2,'signal']=0#产生卖出信号的k线标记为0

  有了交易信号,就可以获取信号,再判断进行下单(huobipro.create_limit_buy/sell_order()了)

  第五步:其实第四步就可以交易了,第五步是回测,一般来说先回测再根据回测结果选用策略,最后才进行实盘

  回测分析的相关有很多种,在这方面我也不是很懂,目前我还是习惯用累积利润来进行分析。

  #由signal计算出实际的每天持仓

  df['pos']=df['signal'].shift()

  df['pos'].fillna(method='ffill',inplace=True)

  df['pos'].fillna(value=0,inplace=True)

  到这里持仓信号就有了,就可以根据持仓和历史k线的价格计算累计利润了,

  df['change']=df['close'].pct_change(1)#根据收盘价计算涨跌幅

  df['by_at_open_change']=df['close']/df['open']-1#开盘买入到收盘的涨跌幅

  df['sell_next_open_change']=df['open'].shift(-1)/df['close']-1#这根收盘到下根开盘的涨跌幅

  df.at[len(df)-1,'sell_next_open_change']=0#补全空值df.at[4,'B']

  #选取开仓条件

  condition1=df['pos']==1

  condition2=df['pos']!=df['pos'].shift(1)

  open_pos_condition=condition1&condition2

  #选取平仓条件

  condition1=df['pos']==0

  condition2=df['pos']!=df['pos'].shift(1)

  close_pos_condition=condition1&condition2

  #对每次交易进行分组

  df.loc[open_pos_condition,'start_time']=df['open_time']

  df['start_time'].fillna(method='ffill',inplace=True)

  df.loc[df['pos']==0,'start_time']=pd.NaT

  init_cash=1000#初始资金

  #计算仓位变动

  #开仓时仓位

  df.loc[open_pos_condition,'position']=init_cash*(1 df['by_at_open_change'])

  group_num=len(df.groupby('start_time'))

  if group_num>1:

  temp=df.groupby('start_time').apply(lambda x:x['close']/x.iloc[0]['close']*x.iloc[0]['position'])

  temp=temp.reset_index(level=[0])

  df['position']=temp['close']

  df['position_max']=df['position']*df['high']/df['close']

  df['position_min']=df['position']*df['low']/df['close']

  ##平仓时的仓位

  #df.loc[close_pos_condition,'position']*=(1 df.loc[close_pos_condition,'sell_next_open_change'])

  #计算持仓利润

  df['porfit']=(df['position']-init_cash)*df['pos']#持仓利润或亏损

  #df.loc[df['pos']==1,'porfit_min']=(df['position_min']-init_cash)*df['pos']#最小持仓盈利或亏损

  #df.loc[df['pos']==0,'porfit_max']=(df['position_max']-init_cash)*df['pos']

  #计算实际资金量

  df['cash']=init_cash df['porfit']#实际资金

  #计算资金曲线

  df['equity_change']=df['cash'].pct_change()

  #开仓日收益率

  df.loc[open_pos_condition,'equity_change']=df.loc[open_pos_condition,'cash']/init_cash-1

  df['equity_change'].fillna(value=0,inplace=True)

  df['equity_curve']=(1 df['equity_change']).cumprod()

  df['equity_curve']=df['equity_curve']*init_cash

0 人点赞