计算机视觉中常用的注意力机制

2022-08-09 17:33:50 浏览数 (2)

注意力机制(Attention)是深度学习中常用的tricks,可以在模型原有的基础上直接插入,进一步增强你模型的性能。本文记录常用 Attention 方法与 Pytorch 实现。

概述

注意力机制起初是作为自然语言处理中的工作Attention Is All You Need被大家所熟知,从而也引发了一系列的XX is All You Need的论文命题,SENET-Squeeze-and-Excitation Networks是注意力机制在计算机视觉中应用的早期工作之一,并获得了2017年imagenet, 同时也是最后一届Imagenet比赛的冠军,后面就又出现了各种各样的注意力机制,应用在计算机视觉的任务中。

论文 arxiv 镜像

如果大家遇到论文下载比较慢, 推荐使用中科院的 arxiv 镜像: http://xxx.itp.ac.cn, 国内网络能流畅访问 简单直接的方法是, 把要访问 arxiv 链接中的域名从 https://arxiv.org 换成 http://xxx.itp.ac.cn

比如: 从 https://arxiv.org/abs/1901.07249 改为 http://xxx.itp.ac.cn/abs/1901.07249

注意力

SeNet: Squeeze-and-Excitation Attention
  • 论文地址:https://arxiv.org/abs/1709.01507
  • 核心思想:对通道做注意力机制,通过全连接层对每个通道进行加权。
  • 网络结构:
  • Pytorch代码
代码语言:javascript复制
import numpy as np
import torch
from torch import nn
from torch.nn import init


class SEAttention(nn.Module):

    def __init__(self, channel=512, reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    se = SEAttention(channel=512, reduction=8)
    output = se(input)
    print(output.shape)

CBAM: Convolutional Block Attention Module
  • 论文地址:CBAM: Convolutional Block Attention Module
  • 核心思想:对通道方向上做注意力机制之后再对空间方向上做注意力机制
  • 网络结构
  • Pytorch代码
代码语言:javascript复制
import numpy as np
import torch
from torch import nn
from torch.nn import init


class ChannelAttention(nn.Module):
    def __init__(self, channel, reduction=16):
        super().__init__()
        self.maxpool = nn.AdaptiveMaxPool2d(1)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.se = nn.Sequential(
            nn.Conv2d(channel, channel // reduction, 1, bias=False),
            nn.ReLU(),
            nn.Conv2d(channel // reduction, channel, 1, bias=False)
        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        max_result = self.maxpool(x)
        avg_result = self.avgpool(x)
        max_out = self.se(max_result)
        avg_out = self.se(avg_result)
        output = self.sigmoid(max_out   avg_out)
        return output


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super().__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size // 2)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        max_result, _ = torch.max(x, dim=1, keepdim=True)
        avg_result = torch.mean(x, dim=1, keepdim=True)
        result = torch.cat([max_result, avg_result], 1)
        output = self.conv(result)
        output = self.sigmoid(output)
        return output


class CBAMBlock(nn.Module):

    def __init__(self, channel=512, reduction=16, kernel_size=49):
        super().__init__()
        self.ca = ChannelAttention(channel=channel, reduction=reduction)
        self.sa = SpatialAttention(kernel_size=kernel_size)

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        residual = x
        out = x * self.ca(x)
        out = out * self.sa(out)
        return out   residual


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    kernel_size = input.shape[2]
    cbam = CBAMBlock(channel=512, reduction=16, kernel_size=kernel_size)
    output = cbam(input)
    print(output.shape)

BAM: Bottleneck Attention Module
  • 论文地址:https://arxiv.org/pdf/1807.06514.pdf
  • 网络结构:
  • Pytorch代码
代码语言:javascript复制
import numpy as np
import torch
from torch import nn
from torch.nn import init


class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.shape[0], -1)


class ChannelAttention(nn.Module):
    def __init__(self, channel, reduction=16, num_layers=3):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        gate_channels = [channel]
        gate_channels  = [channel // reduction] * num_layers
        gate_channels  = [channel]

        self.ca = nn.Sequential()
        self.ca.add_module('flatten', Flatten())
        for i in range(len(gate_channels) - 2):
            self.ca.add_module('fc%d' % i, nn.Linear(gate_channels[i], gate_channels[i   1]))
            self.ca.add_module('bn%d' % i, nn.BatchNorm1d(gate_channels[i   1]))
            self.ca.add_module('relu%d' % i, nn.ReLU())
        self.ca.add_module('last_fc', nn.Linear(gate_channels[-2], gate_channels[-1]))

    def forward(self, x):
        res = self.avgpool(x)
        res = self.ca(res)
        res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
        return res


class SpatialAttention(nn.Module):
    def __init__(self, channel, reduction=16, num_layers=3, dia_val=2):
        super().__init__()
        self.sa = nn.Sequential()
        self.sa.add_module('conv_reduce1',
                           nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=channel // reduction))
        self.sa.add_module('bn_reduce1', nn.BatchNorm2d(channel // reduction))
        self.sa.add_module('relu_reduce1', nn.ReLU())
        for i in range(num_layers):
            self.sa.add_module('conv_%d' % i, nn.Conv2d(kernel_size=3, in_channels=channel // reduction,
                                                        out_channels=channel // reduction, padding=1, dilation=dia_val))
            self.sa.add_module('bn_%d' % i, nn.BatchNorm2d(channel // reduction))
            self.sa.add_module('relu_%d' % i, nn.ReLU())
        self.sa.add_module('last_conv', nn.Conv2d(channel // reduction, 1, kernel_size=1))

    def forward(self, x):
        res = self.sa(x)
        res = res.expand_as(x)
        return res


class BAMBlock(nn.Module):

    def __init__(self, channel=512, reduction=16, dia_val=2):
        super().__init__()
        self.ca = ChannelAttention(channel=channel, reduction=reduction)
        self.sa = SpatialAttention(channel=channel, reduction=reduction, dia_val=dia_val)
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        sa_out = self.sa(x)
        ca_out = self.ca(x)
        weight = self.sigmoid(sa_out   ca_out)
        out = (1   weight) * x
        return out


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    bam = BAMBlock(channel=512, reduction=16, dia_val=2)
    output = bam(input)
    print(output.shape)

ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
  • 论文地址:https://arxiv.org/pdf/1910.03151.pdf
  • 网络结构:
  • Pytorch代码
代码语言:javascript复制
import numpy as np
import torch
from torch import nn
from torch.nn import init
from collections import OrderedDict


class ECAAttention(nn.Module):

    def __init__(self, kernel_size=3):
        super().__init__()
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2)
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        y = self.gap(x)  # bs,c,1,1
        y = y.squeeze(-1).permute(0, 2, 1)  # bs,1,c
        y = self.conv(y)  # bs,1,c
        y = self.sigmoid(y)  # bs,1,c
        y = y.permute(0, 2, 1).unsqueeze(-1)  # bs,c,1,1
        return x * y.expand_as(x)


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    eca = ECAAttention(kernel_size=3)
    output = eca(input)
    print(output.shape)

SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
  • 论文地址:https://arxiv.org/pdf/2102.00240.pdf
  • 网络结构:
  • Pytorch代码
代码语言:javascript复制
import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter


class ShuffleAttention(nn.Module):

    def __init__(self, channel=512, reduction=16, G=8):
        super().__init__()
        self.G = G
        self.channel = channel
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
        self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    @staticmethod
    def channel_shuffle(x, groups):
        b, c, h, w = x.shape
        x = x.reshape(b, groups, -1, h, w)
        x = x.permute(0, 2, 1, 3, 4)

        # flatten
        x = x.reshape(b, -1, h, w)

        return x

    def forward(self, x):
        b, c, h, w = x.size()
        # group into subfeatures
        x = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w

        # channel_split
        x_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w

        # channel attention
        x_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1
        x_channel = self.cweight * x_channel   self.cbias  # bs*G,c//(2*G),1,1
        x_channel = x_0 * self.sigmoid(x_channel)

        # spatial attention
        x_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,w
        x_spatial = self.sweight * x_spatial   self.sbias  # bs*G,c//(2*G),h,w
        x_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w

        # concatenate along channel axis
        out = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,w
        out = out.contiguous().view(b, -1, h, w)

        # channel shuffle
        out = self.channel_shuffle(out, 2)
        return out


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    se = ShuffleAttention(channel=512, G=8)
    output = se(input)
    print(output.shape)

Polarized Self-Attention: Towards High-quality Pixel-wise Regression
  • 论文地址:https://arxiv.org/abs/2107.00782
  • 网络结构:
  • Pytorch代码
代码语言:javascript复制
import numpy as np
import torch
from torch import nn
from torch.nn import init


class ParallelPolarizedSelfAttention(nn.Module):

    def __init__(self, channel=512):
        super().__init__()
        self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
        self.softmax_channel = nn.Softmax(1)
        self.softmax_spatial = nn.Softmax(-1)
        self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
        self.ln = nn.LayerNorm(channel)
        self.sigmoid = nn.Sigmoid()
        self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.agp = nn.AdaptiveAvgPool2d((1, 1))

    def forward(self, x):
        b, c, h, w = x.size()

        # Channel-only Self-Attention
        channel_wv = self.ch_wv(x)  # bs,c//2,h,w
        channel_wq = self.ch_wq(x)  # bs,1,h,w
        channel_wv = channel_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        channel_wq = channel_wq.reshape(b, -1, 1)  # bs,h*w,1
        channel_wq = self.softmax_channel(channel_wq)
        channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)  # bs,c//2,1,1
        channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
                                                                                                                 1).reshape(
            b, c, 1, 1)  # bs,c,1,1
        channel_out = channel_weight * x

        # Spatial-only Self-Attention
        spatial_wv = self.sp_wv(x)  # bs,c//2,h,w
        spatial_wq = self.sp_wq(x)  # bs,c//2,h,w
        spatial_wq = self.agp(spatial_wq)  # bs,c//2,1,1
        spatial_wv = spatial_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)  # bs,1,c//2
        spatial_wq = self.softmax_spatial(spatial_wq)
        spatial_wz = torch.matmul(spatial_wq, spatial_wv)  # bs,1,h*w
        spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))  # bs,1,h,w
        spatial_out = spatial_weight * x
        out = spatial_out   channel_out
        return out


class SequentialPolarizedSelfAttention(nn.Module):

    def __init__(self, channel=512):
        super().__init__()
        self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
        self.softmax_channel = nn.Softmax(1)
        self.softmax_spatial = nn.Softmax(-1)
        self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
        self.ln = nn.LayerNorm(channel)
        self.sigmoid = nn.Sigmoid()
        self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
        self.agp = nn.AdaptiveAvgPool2d((1, 1))

    def forward(self, x):
        b, c, h, w = x.size()

        # Channel-only Self-Attention
        channel_wv = self.ch_wv(x)  # bs,c//2,h,w
        channel_wq = self.ch_wq(x)  # bs,1,h,w
        channel_wv = channel_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        channel_wq = channel_wq.reshape(b, -1, 1)  # bs,h*w,1
        channel_wq = self.softmax_channel(channel_wq)
        channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)  # bs,c//2,1,1
        channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
                                                                                                                 1).reshape(
            b, c, 1, 1)  # bs,c,1,1
        channel_out = channel_weight * x

        # Spatial-only Self-Attention
        spatial_wv = self.sp_wv(channel_out)  # bs,c//2,h,w
        spatial_wq = self.sp_wq(channel_out)  # bs,c//2,h,w
        spatial_wq = self.agp(spatial_wq)  # bs,c//2,1,1
        spatial_wv = spatial_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
        spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)  # bs,1,c//2
        spatial_wq = self.softmax_spatial(spatial_wq)
        spatial_wz = torch.matmul(spatial_wq, spatial_wv)  # bs,1,h*w
        spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))  # bs,1,h,w
        spatial_out = spatial_weight * channel_out
        return spatial_out


if __name__ == '__main__':
    input = torch.randn(1, 512, 7, 7)
    psa = SequentialPolarizedSelfAttention(channel=512)
    output = psa(input)
    print(output.shape)

Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks
  • 论文地址:https://arxiv.org/pdf/1905.09646.pdf
  • 网络结构:
  • Pytorch代码
代码语言:javascript复制
import numpy as np
import torch
from torch import nn
from torch.nn import init


class SpatialGroupEnhance(nn.Module):

    def __init__(self, groups):
        super().__init__()
        self.groups = groups
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
        self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
        self.sig = nn.Sigmoid()
        self.init_weights()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, h, w = x.shape
        x = x.view(b * self.groups, -1, h, w)  # bs*g,dim//g,h,w
        xn = x * self.avg_pool(x)  # bs*g,dim//g,h,w
        xn = xn.sum(dim=1, keepdim=True)  # bs*g,1,h,w
        t = xn.view(b * self.groups, -1)  # bs*g,h*w

        t = t - t.mean(dim=1, keepdim=True)  # bs*g,h*w
        std = t.std(dim=1, keepdim=True)   1e-5
        t = t / std  # bs*g,h*w
        t = t.view(b, self.groups, h, w)  # bs,g,h*w

        t = t * self.weight   self.bias  # bs,g,h*w
        t = t.view(b * self.groups, 1, h, w)  # bs*g,1,h*w
        x = x * self.sig(t)
        x = x.view(b, c, h, w)

        return x


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    sge = SpatialGroupEnhance(groups=8)
    output = sge(input)
    print(output.shape)

Coordinate Attention for Efficient Mobile Network Design

主要应用在轻量级网络上,在resnet系列上效果不好。

  • 论文地址:https://arxiv.org/abs/2103.02907
  • 网络结构
  • Pytorch代码
代码语言:javascript复制
import torch
import torch.nn as nn
import torch.nn.functional as F


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x   3) / 6


class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)


class CoordAtt(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CoordAtt, self).__init__()
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        identity = x

        n, c, h, w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y)

        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out

Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions

计算量特别大,效果一般

  • 论文地址: https://arxiv.org/abs/2112.05561
  • Pytorch 代码
代码语言:javascript复制
class GAM_Attention(nn.Module):
    def __init__(self, in_channels, out_channels, rate=4):
        super(GAM_Attention, self).__init__()

        self.channel_attention = nn.Sequential(
            nn.Linear(in_channels, int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(in_channels / rate), in_channels)
        )

        self.spatial_attention = nn.Sequential(
            nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),
            nn.BatchNorm2d(int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Conv2d(int(in_channels / rate), out_channels, kernel_size=7, padding=3),
            nn.BatchNorm2d(out_channels)
        )

    def forward(self, x):
        # print(x)
        b, c, h, w = x.shape
        x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
        x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
        x_channel_att = x_att_permute.permute(0, 3, 1, 2)

        x = x * x_channel_att

        x_spatial_att = self.spatial_attention(x).sigmoid()
        out = x * x_spatial_att
        # print(out)

        return out

更多注意力

双路注意力机制-DANET
  • 论文标题:Fu_Dual_Attention_Network_for_Scene_Segmentation
  • 论文地址:https://openaccess.thecvf.com/content_CVPR_2019/papers/Fu_Dual_Attention_Network_for_Scene_Segmentation_CVPR_2019_paper.pdf
  • 时间:2019
  • 网络结构
位置注意力-CCNET

在上面的danet上改的,主要是解决计算量的问题, 通过十字交叉的结构来解决

  • 论文标题:CCNet: Criss-Cross Attention for Semantic Segmentation
  • 论文地址:https://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_CCNet_Criss-Cross_Attention_for_Semantic_Segmentation_ICCV_2019_paper.pdf
  • 时间:2019

参考资料

  • https://blog.csdn.net/ECHOSON/article/details/121993573
  • https://github.com/xmu-xiaoma666/External-Attention-pytorch

0 人点赞