c++的ThreadPool,OpenHarmony源码实现版赏析和使用

2022-08-11 15:16:30 浏览数 (1)

前言

c 11虽然加入了线程库thread,然而 c 对于多线程的支持还是比较低级,稍微高级一点的用法都需要自己去实现。比如备受期待的网络库至今标准库里还没有支持,常用acl或asio替代。鸿蒙OpenHarmony源码中的网络栈模块部分,也是十分漂亮的实现,值得学习研究。

c 的ThreadPool实现,网上有很多个版本,文章的末尾就有两种不同的实现。然而经过对比发现,还是OpenHarmony源码的实现最优雅。代码简练,且直观易懂。写的真漂亮!只是使用起来稍麻烦些,比如不支持lambda的写法。后续可基于此改造,使其支持lambda函数的调用。

关于线程池

简单来说就是有一堆已经创建好的线程(最大数目一定),初始时他们都处于空闲状态。当有新的任务进来,从线程池中取出一个空闲的线程处理任务然后当任务处理完成之后,该线程被重新放回到线程池中,供其他的任务使用。当线程池中的线程都在处理任务时,就没有空闲线程供使用,此时,若有新的任务产生,只能等待线程池中有线程结束任务空闲才能执行。

线程池优点

线程本来就是可重用的资源,不需要每次使用时都进行初始化。因此可以采用有限的线程个数处理无限的任务。既可以提高速度和效率,又降低线程频繁创建的开销。比如要异步干的活,就没必要等待。丢到线程池里处理,结果在回调中处理。频繁执行的异步任务,若每次都创建线程势必造成不小的开销。

源码位置

OpenHarmony,智能终端设备操作系统的框架和平台

该网络模块的github地址:communication_netstack: 网络协议栈

代码语言:javascript复制
harmonyoscommunication_netstack-masterutilscommon_utilsincludethread_pool.h

网络协议栈模块作为电话子系统可裁剪部件,主要分为HTTP和socket模块。

网络协议栈模块的源码结构: 

代码语言:javascript复制
/foundation/communication/netstack
├─figures                            # 架构图
├─frameworks                         # API实现
│  └─js                              # JS API实现
│      ├─builtin                     # 小型系统JS API实现
│      └─napi                        # 标准系统JS API实现
│          ├─http                    # http API
│          ├─socket                  # socket API
│          └─websocket               # websocket API
├─interfaces                         # JS 接口定义
├─test                               # 测试
└─utils                              # 工具

 socket接口架构图 

ThreadPool源码

代码语言:javascript复制
/*
 * Copyright (c) 2022 Huawei Device Co., Ltd.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef NETSTACK_THREAD_POOL
#define NETSTACK_THREAD_POOL

#include <atomic>
#include <condition_variable>
#include <queue>
#include <thread>
#include <vector>

namespace OHOS::NetStack {
template <typename Task, const size_t DEFAULT_THREAD_NUM, const size_t MAX_THREAD_NUM> class ThreadPool {
public:
    /**
     * disallow default constructor
     */
    ThreadPool() = delete;

    /**
     * disallow copy and move
     */
    ThreadPool(const ThreadPool &) = delete;

    /**
     * disallow copy and move
     */
    ThreadPool &operator=(const ThreadPool &) = delete;

    /**
     * disallow copy and move
     */
    ThreadPool(ThreadPool &&) = delete;

    /**
     * disallow copy and move
     */
    ThreadPool &operator=(ThreadPool &&) = delete;

    /**
     * make DEFAULT_THREAD_NUM threads
     * @param timeout if timeout and runningThreadNum_ < DEFAULT_THREAD_NUM, the running thread should be terminated
     */
    explicit ThreadPool(uint32_t timeout) : timeout_(timeout), idleThreadNum_(0), needRun_(true)
    {
        for (int i = 0; i < DEFAULT_THREAD_NUM;   i) {
            std::thread([this] { RunTask(); }).detach();
        }
    }

    /**
     * if ~ThreadPool, terminate all thread
     */
    ~ThreadPool()
    {
        // set needRun_ = false, and notify all the thread to wake and terminate
        needRun_ = false;
        while (runningNum_ > 0) {
            needRunCondition_.notify_all();
        }
    }

    /**
     * push it to taskQueue_ and notify a thread to run it
     * @param task new task to Execute
     */
    void Push(const Task &task)
    {
        PushTask(task);

        if (runningNum_ < MAX_THREAD_NUM && idleThreadNum_ == 0) {
            std::thread([this] { RunTask(); }).detach();
        }

        needRunCondition_.notify_all();
    }

private:
    bool IsQueueEmpty()
    {
        std::lock_guard<std::mutex> guard(mutex_);
        return taskQueue_.empty();
    }

    bool GetTask(Task &task)
    {
        std::lock_guard<std::mutex> guard(mutex_);

        // if taskQueue_ is empty, means timeout
        if (taskQueue_.empty()) {
            return false;
        }

        // if run to this line, means that taskQueue_ is not empty
        task = taskQueue_.top();
        taskQueue_.pop();
        return true;
    }

    void PushTask(const Task &task)
    {
        std::lock_guard<std::mutex> guard(mutex_);
        taskQueue_.push(task);
    }

    class NumWrapper {
    public:
        NumWrapper() = delete;

        explicit NumWrapper(std::atomic<uint32_t> &num) : num_(num)
        {
              num_;
        }

        ~NumWrapper()
        {
            --num_;
        }

    private:
        std::atomic<uint32_t> &num_;
    };

    void Sleep()
    {
        std::mutex needRunMutex;
        std::unique_lock<std::mutex> lock(needRunMutex);

        /**
         * if the thread is waiting, it is idle
         * if wake up, this thread is not idle:
         *     1 this thread should return
         *     2 this thread should run task
         *     3 this thread should go to next loop
         */
        NumWrapper idleWrapper(idleThreadNum_);
        (void)idleWrapper;

        needRunCondition_.wait_for(lock, std::chrono::seconds(timeout_),
                                   [this] { return !needRun_ || !IsQueueEmpty(); });
    }

    void RunTask()
    {
        NumWrapper runningWrapper(runningNum_);
        (void)runningWrapper;

        while (needRun_) {
            Task task;
            if (GetTask(task)) {
                task.Execute();
                continue;
            }

            Sleep();

            if (!needRun_) {
                return;
            }

            if (GetTask(task)) {
                task.Execute();
                continue;
            }

            if (runningNum_ > DEFAULT_THREAD_NUM) {
                return;
            }
        }
    }

private:
    /**
     * other thread put a task to the taskQueue_
     */
    std::mutex mutex_;
    std::priority_queue<Task> taskQueue_;
    /**
     * 1 terminate the thread if it is idle for timeout_ seconds
     * 2 wait for the thread started util timeout_
     * 3 wait for the thread notified util timeout_
     * 4 wait for the thread terminated util timeout_
     */
    uint32_t timeout_;
    /**
     * if idleThreadNum_ is zero, make a new thread
     */
    std::atomic<uint32_t> idleThreadNum_;
    /**
     * when ThreadPool object is deleted, wait until runningNum_ is zero.
     */
    std::atomic<uint32_t> runningNum_;
    /**
     * when ThreadPool object is deleted, set needRun_ to false, mean that all thread should be terminated
     */
    std::atomic_bool needRun_;
    std::condition_variable needRunCondition_;
};
} // namespace OHOS::NetStack
#endif /* NETSTACK_THREAD_POOL */

源码赏析

从这份源码里,可以看到queue是如何安全的被使用的。之前博主有篇文章,记录了多线程下使用queue造成的崩溃问题。链接在这里:c 的queue在多线程下崩溃原因分析_特立独行的猫a的博客-CSDN博客_c queue 多线程

通过华为鸿蒙源码的学习研究,可以发现queue的安全使用方式top和pop以及empty的判断都是使用了 std::lock_guard互斥量原子操作的保护。也证实了博主上篇文章分析中提到的,类似队列这种操作,要确保在一个原子操作内完成,不可被打断。试想一个线程刚好pop,另外一个线程却刚要执行top会怎样?那样逻辑就错了。 

这份源码的实现,没有使用一些较难理解的语法,基本上就是使用线程 优先级队列实现的。提前创建指定数目的线程,每次取一个任务并执行。任务队列负责存放线程需要处理的任务,工作线程负责从任务队列中取出和运行任务,可以看成是一个生产者和多个消费者的模型。

ThreadPool使用

以下是该版本thread_pool的简单使用示例,可以看到使用稍微麻烦了些。必须定义格式如下的task类,必须实现operator<和Execute()方法。

需要注意的是,若有多个同一个实现的task实例放入thread_pool,Execute()方法内的逻辑可是在多线程环境下的,需注意多线程下变量访问的保护。如同以下示例,同一个task类的多个实例放入了thread_pool,不加std::lock_guard打印出的显示是乱的。

代码语言:javascript复制
#include "doctest.h"
DOCTEST_MAKE_STD_HEADERS_CLEAN_FROM_WARNINGS_ON_WALL_BEGIN
#include <stdexcept>
DOCTEST_MAKE_STD_HEADERS_CLEAN_FROM_WARNINGS_ON_WALL_END

//#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
//#define DOCTEST_CONFIG_DISABLE
#include <string>
#include <iostream>
#include "thread_pool.h"
//
// Created by Administrator on 2022/8/10.
//
class Task {
public:
    Task() = default;

    explicit Task(std::string context){
        mContext = context;
    }

    bool operator<(const Task &e) const{
        return priority_ < e.priority_;
    }

    void Execute(){
        std::lock_guard<std::mutex> guard(mutex_);
        std::cout <<  "task is execute,name is:"<<mContext<<std::endl;
    }

public:
    uint32_t priority_;
private:
    std::string mContext;
    static std::mutex mutex_;
};


#define DEFAULT_THREAD_NUM 3
#define MAX_THREAD_NUM 6
#define TIME_OUT 500

std::mutex Task::mutex_;

static int myTest(){
    static OHOS_NetStack::ThreadPool<Task, DEFAULT_THREAD_NUM, MAX_THREAD_NUM> threadPool_(TIME_OUT);

    Task task1("name_1");
    Task task2("name_2");
    Task task3("name_3");
    Task task4("name_4");
    threadPool_.Push(task1);
    threadPool_.Push(task2);
    threadPool_.Push(task3);
    threadPool_.Push(task4);

    //system("pause");

    return 0;
}

TEST_CASE("threadPool simple use example, test by doctest unit tool") {
    myTest();
}

结果输出:

引用

c 11线程池的实现原理及回调函数的使用_特立独行的猫a的博客-CSDN博客_c 多线程回调

0 人点赞