数据滤波算法集合「建议收藏」

2022-08-18 19:42:18 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

由于要进行数据处理,就利用网络资源总结各种滤波方法以便日后查阅。

文章目录
  • 一、限幅滤波法
  • 二、中位值滤波法
  • 三、算术平均滤波法
  • 四、中位值平均滤波法(二三结合)
  • 五、限幅平均滤波法(一三结合)
  • 六、递推平均滤波法
  • 七、加权递推平均滤波法(六-改进版)
  • 八、消抖滤波法
  • 九、一阶滞后滤波法
  • 十、卡尔曼滤波
  • 十一、其他滤波
    • (一)、IIR数字滤波器(Infinite Impulse Response Filter)
    • (二)、FIR数字滤波器(Finite Impulse Response Filter)

一、限幅滤波法

实现步骤:

  1. 根据经验法选择最大偏差值E。
  2. |value_now – value_before| <= E,value_now有效,否则其无效且将其舍弃,最后令value_now = value_before。

实现程序:

代码语言:javascript复制
#define E 10    //value取值范围为90~110
int value_init = 100;
int filter(int value_now)
{
       if ((value_now - value_before > E) || (value_before - value_now) > E)
       {
              return value_before;
       }
       return value_now;
}

滤波优缺点: 优:可克服偶然误差。 缺:无法抑制周期性干扰;平滑度差。

二、中位值滤波法

实现步骤:

  1. 连续采样N次(N为奇数)
  2. 将其排序(任选一种排序算法)
  3. 只取中间值

实现程序:

代码语言:javascript复制
#define N 5 //根据传感器性能和主控芯片性能进行设置
int filter(void)
{ 
   
       int *buf = (int*)malloc(N * sizeof(int));
       char count, i, j, temp;
       for (count = 0; count < N; count  )
       { 
   
              buf[count] = get_val(); //获取新的采样值
              delay();    //采样间隔
       }
       for (j = 0; j<N - 1; j  )        //采用冒泡排序
       { 
   
              for (i = 0; i<N - j - 1; i  )
              { 
   
                     if (buf[i]>buf[i   1])
                     { 
   
                           temp = buf[i];
                           buf[i] = buf[i   1];
                           buf[i   1] = temp;
                     }
              }
       }
       freebuf);       //释放内存块
       return buf[(N - 1) / 2];         //返回中间值
}

滤波优缺点: 优:可克服偶然误差;对缓慢变化的数据有很好的滤波效果。 缺:不适用于快速变化的数据。

三、算术平均滤波法

实现步骤:

  1. 取N个数据求均值 N大 –> 平滑度高,灵敏度低 N小 –> 平滑度低,灵敏度高 通常,流量N=12,压力N=4,液面,N=412,温度N=14

实现程序:

代码语言:javascript复制
#define N 10
int filter(void)
{ 
   
       int sum = 0, count;
       for (count = 0; count < N; count  )
       { 
   
              sum  = get_val();    //获取采样值并求和
              delay();
       }
       return (sum / N);
}

滤波优缺点: 优:适用于对一般具有随机干扰的信号进行滤波,信号会在此平均值附近上下波动。 缺:不适用于测量速度慢或要求数据计算快的实时控制;浪费运行内存。

四、中位值平均滤波法(二三结合)

实现步骤:

  1. 采样N个数据并排序
  2. 去掉数组头和尾(去除最大最小值)
  3. 计算(N-2)个数的平均数

实现程序:

代码语言:javascript复制
#define N 12
int get_val();		//传感器采集数据函数
int filter()
{ 
   
       char count, i, j;
       int buf[N];
       int sum = 0, temp;
       for (count = 0; count < N; count  )
       { 
   
              buf[count] = get_val();//获取采样值
              delay();
       }
       for (i = 0; i < N - 1; i  )      //冒泡排序
       { 
    
              for (j = 0; j < N - j - 1; j  )
              { 
   
                     if (buf[i] > buf[i   1])
                     { 
   
                           temp = buf[i];
                           buf[i] = buf[i 1];
                           buf[i   1] = temp;
                     }
              }
       }
       for (count = 1; count < N - 1; count  )
       { 
   
                //由于数列已经排序了,所以去掉头尾就是去掉最小值和最大值
              sum  = buf[count];   
       }
       return (sum / (N - 2));
}

滤波优缺点: 优:对于偶然出现的脉冲性干扰;可消除由其引起的采样值偏差;对周期干扰有良好的抑制作用;平滑度高;适于高频振荡的系统。 缺:浪费运行内存。

五、限幅平均滤波法(一三结合)

实现步骤:

  1. 对数据进行限幅并对有效数据求平均值。

实现程序:

代码语言:javascript复制
#define E 10 //误差允许值
#define N 12 //采样数据数目
char value_init = 100;  //采样参考值
char temp;
char getval();          //传感器读取数据函数
char filter(void)
{ 
   
	char i, value_now, value_before, sum, count = 0;
	//count:防止传感器出错而陷入死循环
	char *buf = (char*)malloc(N * sizeof(char));
	while (1)//直到取得有效值为止
	{ 
   
		temp = getval();
		if ((temp - value_init >E) || (temp - value_init <E))
		{ 
   
			 temp = getval();
			 count  ;
			 if (count == 5)
           { 
   
				 buf[0] = value_init;
				 break;
			  }
	    }
		else
		{ 
   
			buf[0] = temp;            //获取采样值用作上一次的值
			break;
		}
	}
	for (i = 1; i < N; i  )     //过滤超出范围的值
	{ 
   
		value_now = getval();     //获取采样值用作上一次的值
		if ((value_now - buf[i - 1]) > E || (buf[i - 1] - value_now) > E)
		{ 
   
			buf[i] = buf[i - 1];        //本次数据等于上一数据
		}
		else
			buf[i] = value_now;           //本次数据有效
	}
	for (i = 0; i < N; i  )
	{ 
   
		buf[i] = buf[i   1];
		sum  = buf[i];
	}
	return (sum / N);
}

滤波优缺点: 优:限幅 滤波的优点。 缺:浪费运行内存。

六、递推平均滤波法

实现步骤:

  1. 将N个数据看做(FIFO)队列,每次采样到的数据替换掉最先进入队列的数据,最后求平均值。

实现程序:

代码语言:javascript复制
#define N 12
int buf[N];         //全局变量,存储N个数据
static char i = 0;
int get_val();
int filter(void)
{ 
   
       char count;
       int sum = 0;
       if (i == N) i = 0; 
       //当数据大于数组长度,替换数据组的最先进入的一个数据相当于环形队列更新(FIFO)
       buf[i  ] = get_val();
       for (count = 0; count < N; count  )
              sum  = buf[count];
       return(sum / N);
}

滤波优缺点: 优:对周期性干扰有良好的抑制作用,平滑度高;适用于高频振荡的系统。 缺:灵敏度低;对偶然出现的脉冲性干扰的抑制作用较差;不易消除由于脉冲干扰所引起的采样值偏差; 不适用于脉冲干扰比较严重的场合;浪费运行内存。

七、加权递推平均滤波法(六-改进版)

实现步骤:

  1. 越接近现在时刻的数据,权取得越大。(给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。)

实现程序:

代码语言:javascript复制
#define N 12
const char coe[] = { 
    1,2,3,4,5,6,7,8,9,10,11,12 };      //权值对照表
const char sum_coe = 1   2   3   4   5   6   7   8   9   10   11   12;//权和
//也可用递归方式生成这两个数组
char filter()
{ 
   
       char i;
       char value_buf[N];
       int sum = 0;
       for (i = 0; i < N; i  )
       { 
   
              value_buf[i] = get_val();//获取采样数据
              delay();
       }
       for (i = 0; i < N; i  )
              sum  = value_buf[i] * coe[i];
       return sum / sum_coe;
}

滤波优缺点: 优:适用于有较大纯滞后时间常数的控制对象;采样周期较短的系统。 缺:对于纯滞后时间常数较小,采样周期较长;变化缓慢的信号不能迅速反应系统当前所受干扰的严重程度,滤波效果差。

八、消抖滤波法

实现步骤:

  1. 设置一个滤波计数器。
  2. 将每次采样值与当前有效值比较:如果采样值==当前有效值,则返回上一个有效值; 如果采样值!=当前有效值,则计数器 1,并判断计数器是否>=上限N(溢出); 如果计数器溢出,则将本次值替换当前有效值,并清计数器。

实现程序:

代码语言:javascript复制
#define N 12
char get_val();
char filter()
{ 
   
       char count = 0;
       char value_now;
       char value_before = get_val();       //获取上一个采样数据
       while (value_now != value_before)
       { 
   
              value_before = value_now;
                     count  ;
              if (count >= N)
                     return value_now;
              delay();//适当延时
              value_now = get_val();//获取下一个采样数据
       }
       return value_before;
}

滤波优缺点: 优:对于变化缓慢的被测参数有较好的滤波效果, 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。 缺:对于快速变化的参数不宜; 如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。

九、一阶滞后滤波法

实现步骤:

  1. 一阶低通滤波法采用本次采样值与上次滤波输出值进行加权,得到有效滤波值,使得输出对输入有反馈作用。

实现程序:

代码语言:javascript复制
#define thresholdValue 10 //阀门值
#define N 10 //数据量
float dataArr[N] = { 
    99,102,108,89,98,86,89,90,93,105 };        //假设获得的数据
char flag0 = 0, flag1 = 0;                  //前一次比较与当前比较的方向位
float abs(float first, float second)        //求两个数的绝对值
{ 
   
       float abs_val;
       if(first>second)
       { 
   
              abs_val = first - second;
              flag1 = 0;
       }
       else
       { 
   
              abs_val = second - first;
              flag1 = 1;
       }
       return abs_val;
}

void filter(void)
{ 
   
       char i = 0, filterCount = 0, coeff = 0;  //filterCount:滤波计数器 coeff:滤波系数
       float Abs = 0.00;
       for (i = 1; i < N; i  )
       { 
   
              Abs = abs(dataArr[i - 1], dataArr[i]);
              if (!flag1^flag0)     //异或
              { 
   
                     filterCount  ;
                     if (Abs >= thresholdValue)
                     { 
   
                           filterCount  = 2;
                     }
                     if (filterCount >= 12)
                           filterCount = 12;
                     coeff = 20 * filterCount;   //确定一阶滤波系数
              }
              else//消抖
                     coeff = 5;
              //一阶滤波算法
              if (flag1 == 0)//当前值小于前一个值
                     dataArr[i] = dataArr[i - 1] - coeff*(dataArr[i - 1] - 
dataArr[i]) / 256;
              else
                     dataArr[i] = dataArr[i - 1]   coeff*(dataArr[i - 1] - 
dataArr[i]) / 256;
              filterCount = 0;
              flag0 = flag1;
       }
}

滤波优缺点: 优: 对周期性干扰具有良好的抑制作用;适用于波动频率较高的场合。 缺:相位滞后;灵敏度低;滞后程度取决于a值大小;不能消除滤波频率高于采样频率的1/2的干扰信号。

十、卡尔曼滤波

实现步骤:

  1. 通过实时改变协方差来对系统进行修正。

实现程序:

代码语言:javascript复制
/*------------------------------------------------------------------------------ | Kalman Filter equations | | state equation状态方程 | x(k) = A·x(k-1)   B·u(k)   w(k-1) | 如果没有控制量则B·u(k)=0(如单纯测量温度湿度之类的) | | observations equation观测方程(传感器测得数据) | z(k) = H·x(k)   y(k) | | prediction equations预测方程 | x(k|k-1) = A·x(k-1|k-1)   B·u(k) | P(k|k-1) = A·P(k-1|k-1)·A^T   Q | | correction equations修正方程 | K(k) = P(k|k-1)·H^T·(H·P(k|k-1)·H^T   R)^(-1) | x(k|k) = x(k|k-1)   K(k)·(z(k) - H·x(k|k-1)) | P(k|k) = (I - K(k)·H)·P(k|k-1) ------------------------------------------------------------------------------*/

/* x和P只需要赋初值,每次迭代会产生新值;K用不着赋初值; Q和R赋值以后在之后的迭代中也可以改。 x和P的初值是可以随便设的,强大的卡尔曼滤波器马上就能抹除不合理之处。 但需注意,P的初值不能为0,否则滤波器会认为已经没有误差了 R越大曲线越平滑,但会使滤波器变得不敏感,存在滞后 (Q和R取值也可以是时变的,可以识别跳变,可以自适应) Q:过程噪声,Q增大,动态响应变快,收敛稳定性变坏 R:测量噪声,R增大,动态响应变慢,收敛稳定性变好 */

#define KalmanQ 0.000001
#define KalmanR 0.0004

static double KalmanFilter(const double ResourceData, double ProcessNoiseQ, double MeasureNoiseR)
{ 
   
       double R = MeasureNoiseR;
       double Q = ProcessNoiseQ;
       static double x_last=-60;
       double x_mid = x_last;
       double x_now;
       static double p_last=1;
       double p_mid;
       double p_now;
       double K;
       x_mid = x_last;                        //x_last=x(k-1|k-1),x_mid=x(k|k-1)
       p_mid = p_last;                        //p_mid=p(k|k-1),p_last=p(k-1|k-1),Q=过程噪声
       K = p_mid / (p_mid   R);
       x_now = x_mid   K*(ResourceData - x_mid);
       p_now = (1 - K)*p_mid   Q;
       p_last = p_now;
       x_last = x_now;
       return x_now;
}

滤波优缺点: 优:能处理传感器噪声和过程噪声等。 缺:当运动目标长时间被遮挡时会存在目标跟踪丢失的情况 。

十一、其他滤波

(一)、IIR数字滤波器(Infinite Impulse Response Filter)

递归滤波器,也就是IIR数字滤波器,顾名思义,具有反馈。

(二)、FIR数字滤波器(Finite Impulse Response Filter)

有限长单位冲激响应滤波器,又称为非递归型滤波器,是数字信号处理系统中最基本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。因此,FIR滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。它具有线性相位、容易设计的优点,但相对于IIR滤波器它需要更多的参数,因此DSP需要更多的计算时间,对DSP的实时性有影响。

从性能上来说,IIR滤波器传递函数包括零点和极点两组可调因素,对极点的惟一限制是在单位圆内。因此可用较低的阶数获得高的选择性,所用的存储单元少,计算量小,效率高。但是这个高效率是以相位的非线性为代价的。选择性越好,则相位非线性越严重。FIR滤波器传递函数的极点固定在原点,是不能动的,它只能靠改变零点位置来改变它的性能。所以要达到高的选择性,必须用较高的阶数;对于同样的滤波器设计指标,FIR滤波器所要求的阶数可能比IIR滤波器高5-10倍,结果,成本较高,信号延时也较大;如果按线性相位要求来说,则IIR滤波器就必须加全通网络进行相位校正,同样要大大增加滤波器的阶数和复杂性。而FIR滤波器却可以得到严格的线性相位。 从结构上看,IIR滤波器必须采用递归结构来配置极点,并保证极点位置在单位圆内。由于有限字长效应,运算过程中将对系数进行舍入处理,引起极点的偏移。这种情况有时会造成稳定性问题,甚至产生寄生振荡。相反,FIR滤波器只要采用非递归结构,不论在理论上还是在实际的有限精度运算中都不存在稳定性问题,因此造成的频率特性误差也较小。此外FIR滤波器可以采用快速傅里叶变换算法,在相同阶数的条件下,运算速度可以快得多。 另外,也应看到,IIR滤波器虽然设计简单,但主要是用于设计具有分段常数特性的滤波器,如低通、高通、带通及带阻等,往往脱离不了模拟滤波器的格局。而FIR滤波器则要灵活得多,尤其是他易于适应某些特殊应用,如构成数字微分器或希尔波特变换器等,因而有更大的适应性和广阔的应用领域。 从上面的简单比较可以看到IIR与FIR滤波器各有所长,所以在实际应用时应该从多方面考虑来加以选择。从使用要求上来看,在对相位要求不敏感的场合,如语言通信等,选用IIR较为合适,这样可以充分发挥其经济高效的特点;对于图像信号处理,数据传输等以波形携带信息的系统,则对线性相位要求较高。如果有条件,采用FIR滤波器较好。当然,在实际应用中可能还要考虑更多方面的因素。 2,不论IIR和FIR,阶数越高,信号延迟越大;同时在IIR滤波器中,阶数越高,系数的精度要求越高,否则很容易造成有限字长的误差使极点移到单位园外。因此在阶数选择上是综合考虑的。

参考网址: 十大滤波算法程序大全(Arduino精编无错版) How a Kalman filter works, in pictures IIR滤波器和FIR滤波器的区别与联系zz IIR与FIR滤波器的比较和区别

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/135256.html原文链接:https://javaforall.cn

0 人点赞