【Spark】Spark基础教程

2022-08-19 19:37:28 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

Spark最初由美国加州伯克利大学的AMP实验室于2009年开发,是基于内存计算大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。

Spark特点

Spark具有如下几个主要特点:

  • 运行速度快:Spark使用先进的DAG(Directed Acyclic Graph,有向无环图)执行引擎,以支持循环数据流与内存计算,基于内存的执行速度可比Hadoop MapReduce快上百倍,基于磁盘的执行速度也能快十倍;
  • 容易使用:Spark支持使用Scala、Java、Python和R语言进行编程,简洁的API设计有助于用户轻松构建并行程序,并且可以通过Spark Shell进行交互式编程;
  • 通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件,这些组件可以无缝整合在同一个应用中,足以应对复杂的计算;
  • 运行模式多样:Spark可运行于独立的集群模式中,或者运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源。

Spark相对于Hadoop的优势

Hadoop虽然已成为大数据技术的事实标准,但其本身还存在诸多缺陷,最主要的缺陷是其MapReduce计算模型延迟过高,无法胜任实时、快速计算的需求,因而只适用于离线批处理的应用场景。

回顾Hadoop的工作流程,可以发现Hadoo

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/136071.html原文链接:https://javaforall.cn

0 人点赞