来源|SQL和数据库技术(ID:SQLplusDB)
概述
阅读官方在线文档无疑是学习Oracle最好的方法,本文参考在线文档介绍表连接以及连接树(Join Trees)。
表连接概述
Oralce可以把两个数据集通过一定的关联条件进行结合操作,即表连接(Join)。
Oralce数据库的表连接主要包括两种语法:
1.标准SQL语法:(Ansi Join)
代码语言:javascript复制通过JOIN ON语句,进行表连接。
例:
select emp.deptno,emp.empno
from emp join dept
on emp.deptno = dept.deptno;
2.Oracle SQL语法:
代码语言:javascript复制通过Where条件,进行表连接。
例:
select emp.deptno,emp.empno
from emp,dept
where emp.deptno=dept.deptno;
连接树(Join Trees)
多个数据集(表)进行连接时,执行过程可以表示成树形结构,即连接树。
根据访问表的顺序不同,连接树可以分为左深树(Left Deep Join Tree)、右深树(Right Deep Join Tree)、浓密树(Bushy Join Tree)。
左深树(Left Deep Join Tree)
如果连接树的每个连接的右节点都是一个表,就是左深树(Left Deep Join Tree)。
左深树(Left Deep Join Tree)一般包括以下特点:
代码语言:javascript复制・左深树是Oracle优化器最普遍使用的连接树
・嵌套循环连接的连接树仅可能是左深树
右深树(Right Deep Join Tree)
如果连接树的每个连接的左节点都是一个表,就是右深树(Right Deep Join Tree。
右深树(Right Deep Join Tree)一般包括以下特点:
代码语言:javascript复制・通常在数据仓库的环境中使用,如:用于连接事实表和多个维度表的连接(星型模式)。
・哈希连接和排序合并连接的连接树有可能是右深树。
・哈希连接为右深树时,可能会消耗大量的PGA
因为哈希连接为右深树时,会同时有多个表被做成Hash表,从而消耗过多的PGA. (Ref Old Bug 4475206)
浓密树(Bushy Join Tree)
如果连接树的左节点或右节点都有可能不是表,就是浓密树(Bushy Join Tree)。
浓密树(Bushy Join Tree)一般包括以下特点:
代码语言:javascript复制・优化器无法选择其他树形连接是才会选择浓密树
・一般当查询包含子查询或者视图时,可能会产生浓密树。如无法进行视图合并等
连接树的处理
连接树的一般处理规则如下:
代码语言:javascript复制・从最左端的叶节点开始处理
・左节点的处理优先级高于右节点
・左节点驱动右节点
・子节点在父节点之前进行处理
・子节点处理完获得的数据返回给父节点。
连接树的执行计划例
下面我们创建4个表,通过SQL文和HINT的组合来生成各种连接树的执行计划,以帮助我们加深对连接树的理解。
代码语言:javascript复制--准备表
SQL> conn scott/tiger
SQL> create table t1 (id number,col varchar2(20));
SQL> create table t2 (id number,col varchar2(20));
SQL> create table t3 (id number,col varchar2(20));
SQL> create table t4 (id number,col varchar2(20));
--插入数据
SQL> begin
for i in 1..100 loop
insert into t1 values(i,i||'t');
insert into t1 values(i 10,i||'t');
insert into t1 values(i 20,i||'t');
insert into t1 values(i 30,i||'t');
end loop;
commit;
end;
/
SQL> BEGIN
dbms_stats.gather_table_stats('scott','t1');
dbms_stats.gather_table_stats('scott','t2');
dbms_stats.gather_table_stats('scott','t3');
dbms_stats.gather_table_stats('scott','t4');
END;
/
---查看执行计划
SQL> SET AUTOTRACE TRACEONLY EXPLAIN
1.左深树(Hash Join)
代码语言:javascript复制SQL> SELECT /* ordered use_hash(t2,t3,t4) */ t1.*, t2.*, t3.*, t4.*
2 FROM t1, t2, t3, t4
3 WHERE t1.id = t2.id AND t2.id = t3.id AND t3.id = t4.id;
执行计划
----------------------------------------------------------
Plan hash value: 894925296
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 82 | 9 (0)| 00:00:01 |
|* 1 | HASH JOIN | | 1 | 82 | 9 (0)| 00:00:01 |
|* 2 | HASH JOIN | | 1 | 57 | 7 (0)| 00:00:01 |
|* 3 | HASH JOIN | | 1 | 32 | 5 (0)| 00:00:01 |
| 4 | TABLE ACCESS FULL| T1 | 400 | 2800 | 3 (0)| 00:00:01 |
| 5 | TABLE ACCESS FULL| T2 | 1 | 25 | 2 (0)| 00:00:01 |
| 6 | TABLE ACCESS FULL | T3 | 1 | 25 | 2 (0)| 00:00:01 |
| 7 | TABLE ACCESS FULL | T4 | 1 | 25 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("T3"."ID"="T4"."ID")
2 - access("T2"."ID"="T3"."ID")
3 - access("T1"."ID"="T2"."ID")
2. 左深树(Nest loop)
代码语言:javascript复制SQL> SELECT /* ordered use_nl(t2,t3,t4) */ t1.*, t2.*, t3.*, t4.*
2 FROM t1, t2, t3, t4
3 WHERE t1.id = t2.id AND t2.id = t3.id AND t3.id = t4.id;
执行计划
----------------------------------------------------------
Plan hash value: 4050478457
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 82 | 117 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | 1 | 82 | 117 (0)| 00:00:01 |
| 2 | NESTED LOOPS | | 1 | 57 | 115 (0)| 00:00:01 |
| 3 | NESTED LOOPS | | 1 | 32 | 113 (0)| 00:00:01 |
| 4 | TABLE ACCESS FULL| T1 | 400 | 2800 | 3 (0)| 00:00:01 |
|* 5 | TABLE ACCESS FULL| T2 | 1 | 25 | 0 (0)| 00:00:01 |
|* 6 | TABLE ACCESS FULL | T3 | 1 | 25 | 2 (0)| 00:00:01 |
|* 7 | TABLE ACCESS FULL | T4 | 1 | 25 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
5 - filter("T1"."ID"="T2"."ID")
6 - filter("T2"."ID"="T3"."ID")
7 - filter("T3"."ID"="T4"."ID")
3. 右深树
代码语言:javascript复制SQL> SELECT /* LEADING (t4 t3 t2 t1)
2 USE_HASH(t3) SWAP_JOIN_INPUTS(t3)
3 USE_HASH(t2) SWAP_JOIN_INPUTS(t2)
4 USE_HASH(t1) SWAP_JOIN_INPUTS(t1)
5 */ t1.*, t2.*, t3.*, t4.*
6 FROM t2, t1, t3, t4
7 WHERE t1.id = t2.id AND t2.id = t3.id AND t3.id = t4.id;
执行计划
----------------------------------------------------------
Plan hash value: 2117174619
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 82 | 9 (0)| 00:00:01 |
|* 1 | HASH JOIN | | 1 | 82 | 9 (0)| 00:00:01 |
| 2 | TABLE ACCESS FULL | T1 | 400 | 2800 | 3 (0)| 00:00:01 |
|* 3 | HASH JOIN | | 1 | 75 | 6 (0)| 00:00:01 |
| 4 | TABLE ACCESS FULL | T2 | 1 | 25 | 2 (0)| 00:00:01 |
|* 5 | HASH JOIN | | 1 | 50 | 4 (0)| 00:00:01 |
| 6 | TABLE ACCESS FULL| T3 | 1 | 25 | 2 (0)| 00:00:01 |
| 7 | TABLE ACCESS FULL| T4 | 1 | 25 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("T1"."ID"="T2"."ID")
3 - access("T2"."ID"="T3"."ID")
5 - access("T3"."ID"="T4"."ID")
4. 浓密树
代码语言:javascript复制SQL> SELECT /* ordered use_hash(b) */*
2 FROM
3 (SELECT /* ordered use_hash(t1) no_merge(a) */ t1.*
4 FROM t1,
5 (SELECT /* ordered use_hash(t2 t2) */ t2.*
6 FROM t2,
7 t3
8 WHERE t2.id = t3.id) a
9 WHERE t1.id = a.id ) b,
10 t4
11 WHERE b.id = t4.id;
执行计划
----------------------------------------------------------
Plan hash value: 1347472701
------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 45 | 9 (0)| 00:00:01 |
|* 1 | HASH JOIN | | 1 | 45 | 9 (0)| 00:00:01 |
|* 2 | HASH JOIN | | 1 | 20 | 7 (0)| 00:00:01 |
| 3 | TABLE ACCESS FULL | T1 | 400 | 2800 | 3 (0)| 00:00:01 |
| 4 | VIEW | | 1 | 13 | 4 (0)| 00:00:01 |
|* 5 | HASH JOIN | | 1 | 26 | 4 (0)| 00:00:01 |
| 6 | TABLE ACCESS FULL| T2 | 1 | 13 | 2 (0)| 00:00:01 |
| 7 | TABLE ACCESS FULL| T3 | 1 | 13 | 2 (0)| 00:00:01 |
| 8 | TABLE ACCESS FULL | T4 | 1 | 25 | 2 (0)| 00:00:01 |
------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("T1"."ID"="T4"."ID")
2 - access("T1"."ID"="A"."ID")
5 - access("T2"."ID"="T3"."ID")
Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 5 (U - Unused (5))
---------------------------------------------------------------------------
1 - SEL$F5BB74E1
U - ordered / duplicate hint
1 - SEL$F5BB74E1 / B@SEL$1
U - use_hash(b)
3 - SEL$F5BB74E1 / T1@SEL$2
U - use_hash(t1)
6 - SEL$3 / T2@SEL$3
U - use_hash(t2 t2) / duplicate hint
U - use_hash(t2 t2)
SQL>
参考
Database SQL Tuning Guide
https://docs.oracle.com/database/121/TGSQL/tgsql_join.htm#TGSQL95345
>About Joins
>>Join Trees
https://iggyfernandez.wordpress.com/2010/11/27/sql-101-deep-left-trees-deep-right-trees-and-bushy-trees-oh-my/
>SQL 101: Deep Left Trees, Deep Right Trees, and Bushy Trees! Oh, My!
http://www.oaktable.net/content/right-deep-left-deep-and-bushy-joins
>Right Deep, Left Deep and Bushy Joins
http://oradwstories.blogspot.com/2015/07/right-deep-join-trees-and-star-schema.html
>Right-Deep Join Trees and Star Schema Queries