机器学习概念了解

2022-08-24 15:12:49 浏览数 (1)

本文是根据人工智能大牛、前百度人工智能实验室主任吴恩达博士所教授的课程机器学习的内容和笔记。

由于腾讯上没有吴恩达的课程,所以选取了另外一个相关的视频:

//v.qq.com/txp/iframe/player.html?

1、什么是机器学习?

机器学习是指通过大量的训练集来对自己建好的模型进行训练学习,最后使计算机在没有被明确编程的情况下,仍然能够进行学习的能力。

2、什么是训练集,是用来做什么的?

训练所用的问题和答案叫做训练集,训练集是数据,需要提前收集,用来对模型进行训练。

3、什么是测试集,是用来做什么的?

评估所用的问题和答案叫做测试集。测试集是数据,需要提前收集,用来评估模型的好坏。

4、.什么是模型?

描述问题与答案之间关系叫做模型

实际上,即使是在机器学习的专业人士中,也不存在一个被广泛认可的定义来准确定义机器学习是什么或不是什么,现在我将告诉你一些人们尝试定义的示例。第一个机器学习的定义来自于Arthur Samuel。他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域。Samuel的定义可以回溯到50年代,他编写了一个西洋棋程序。这程序神奇之处在于,编程者自己并不是个下棋高手。但因为他太菜了,于是就通过编程,让西洋棋程序自己跟自己下了上万盘棋。通过观察哪种布局(棋盘位置)会赢,哪种布局会输,久而久之,这西洋棋程序明白了什么是好的布局,什么样是坏的布局。然后就牛逼大发了,程序通过学习后,玩西洋棋的水平超过了Samuel。这绝对是令人注目的成果。

尽管编写者自己是个菜鸟,但因为计算机有着足够的耐心,去下上万盘的棋,没有人有这耐心去下这么多盘棋。通过这些练习,计算机获得无比丰富的经验,于是渐渐成为了比Samuel更厉害的西洋棋手。上述是个有点不正式的定义,也比较古老。另一个年代近一点的定义,由Tom Mitchell提出,来自卡内基梅隆大学,Tom定义的机器学习是,一个好的学习问题定义如下,他说,一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。我认为经验E 就是程序上万次的自我练习的经验而任务T 就是下棋。性能度量值P呢,就是它在与一些新的对手比赛时,赢得比赛的概率。

目前存在几种不同类型的学习算法。主要的两种类型被我们称之为监督学习和无监督学习。这里简单说两句,监督学习这个想法是指,我们将教计算机如何去完成任务,而在无监督学习中,我们打算让它自己进行学习。如果对这两个术语仍一头雾水,请不要担心,我会后面具体介绍这两种学习算法。此外你将听到诸如,强化学习和推荐系统等各种术语。这些都是机器学习算法的一员,以后我们都将介绍到,但学习算法最常用两个类型就是监督学习、无监督学习。

我非常注重这部分内容,实际上,就这些内容而言我不知道还有哪所大学会介绍到。给你讲授学习算法就好像给你一套工具,相比于提供工具,可能更重要的,是教你如何使用这些工具。我喜欢把这比喻成学习当木匠。想象一下,某人教你如何成为一名木匠,说这是锤子,这是螺丝刀,锯子,祝你好运,再见。这种教法不好,不是吗?你拥有这些工具,但更重要的是,你要学会如何恰当地使用这些工具。会用与不会用的人之间,存在着鸿沟。尤其是知道如何使用这些机器学习算法的,与那些不知道如何使用的人。我们要花很多时间来探讨,如果你真的试图开发机器学习系统,探讨如何做出最好的实践类型决策,才能决定你的方式来构建你的系统,这样做的话,当你运用学习算法时,就不太容易变成那些为寻找一个解决方案花费6个月之久的人们的中一员。他们可能已经有了大体的框架,只是没法正确的工作于是这就浪费了六个月的时间。所以我会花很多时间来教你这些机器学习、人工智能的最佳实践以及如何让它们工作,我们该如何去做,硅谷和世界各地最优秀的人是怎样做的。

0 人点赞