基于python的安全帽识别安全帽检测可以检测图片,视频流,有界面[通俗易懂]

2022-08-26 16:22:54 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

安全帽识别,安全帽检测yolo可以检测图片,视频流,有界面python识别率99%

代码语言:javascript复制
# parameters
nc: 3  # number of classes     <============ 修改这里为数据集的分类数
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 
# anchors
anchors: # <============ 根据 ./data/gen_anchors/anchors.txt 中的 Best Anchors 修改,需要取整(可选)
  - [14,27, 23,46, 28,130] 
  - [39,148, 52,186, 62.,279] 
  - [85,237, 88,360, 145,514]
 
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]
 
# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

效果图:

效果视频:

https://player.bilibili.com/player.html?aid=972775064

python yolo 安全帽识别

项目代码下载:

Python工地安全帽识别安全帽检测预警yolo可以检测图片,视频流,有界面python商用源码-互联网文档类资源-CSDN下载

0基础部署该项目视频教程:

商用Python工地安全帽识别安全帽检测预警yolo可以检测图片,视频流,有界面python商用源码视频讲解-深度学习文档类资源-CSDN下载

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/144583.html原文链接:https://javaforall.cn

0 人点赞