该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
前一篇文章介绍OpenCV实现图像形态学变换,包括图像顶帽运算和图像黑帽运算。本篇文章主要讲解灰度直方图的基本概念,Python调用OpenCV实现绘制图像直方图,基础性知识希望对您有所帮助。
- 一.灰度直方图基本概率
- 二.绘制直方图
- 三.使用OpenCV统计绘制直方图
- 四.总结
文章参考自己以前系列图像处理文章及OpenCV库函数,同时部分参考网易云lilizong老师的视频,推荐大家去学习。同时,本篇文章涉及到《计算机图形学》基础知识,请大家下来补充。该系列在github所有源代码:
- https://github.com/eastmountyxz/ ImageProcessing-Python
前文回顾(下面的超链接可以点击喔):
- [Python图像处理] 一.图像处理基础知识及OpenCV入门函数
- [Python图像处理] 二.OpenCV Numpy库读取与修改像素
- [Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
- [Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波、中值滤波及双边滤波
- [Python图像处理] 五.图像融合、加法运算及图像类型转换
- [Python图像处理] 六.图像缩放、图像旋转、图像翻转与图像平移
- [Python图像处理] 七.图像阈值化处理及民族服饰实验对比
- [Python图像处理] 八.图像腐蚀与图像膨胀
- [Python图像处理] 九.形态学之图像开运算、闭运算、梯度运算
- [Python图像处理] 十.形态学之图像顶帽运算和黑帽运算
- [Python图像处理] 十一.灰度直方图概念及OpenCV绘制直方图
学Python近八年,认识了很多大佬和朋友,感恩。深知自己很菜,得拼命努力前行,编程也没有什么捷径,干就对了。希望未来能更透彻学习和撰写文章,同时非常感谢参考文献中的大佬们的文章和分享,共勉。 - https://blog.csdn.net/eastmount
一. 灰度直方图基本概念
什么是灰度直方图? 灰度直方图(histogram)是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。横坐标是灰度级,纵坐标是灰度级出现的频率。
对于连续图像,平滑地从中心的高灰度级变化到边缘的低灰度级。直方图定义为:
其中A(D)为阈值面积函数:为一幅连续图像中被具有灰度级D的所有轮廓线所包围的面积。对于离散函数,固定ΔD为1,则:H(D)=A(D)-A(D 1)。
色彩直方图是高维直方图的特例,它统计色彩的出现频率,即色彩概率分布信息。通常这需要一定的量化过程,将色彩分成若干互不重叠的种类。一般不直接在RGB色彩空间中统计,而是在将亮度分离出来后,对代表色彩部分的信息进行统计,如在HSI空间的HS子空间、YUV空间的UV子空间,以及其它反映人类视觉特点的彩色空间表示中进行。
直方图的计算方法如下: 依据定义,若图像具有L(通常L=256,即8位灰度级)级灰度,则大小为MxN的灰度图像f(x,y)的灰度直方图hist[0…L-1]可用如下计算获得。
- 初始化 hist[k]=0; k=0,…,L-1
- 统计 hist[f(x,y)] ; x=0,…,M-1, y =0,…,N-1
- 归一化 hist[f(x,y)]/=M*N
那么说了这么多,直方图究竟有什么作用呢? 在使用轮廓线确定物体边界时,通过直方图更好的选择边界阈值,进行阈值化处理;对物体与背景有较强对比的景物的分割特别有用;简单物体的面积和综合光密度IOD可以通过图像的直方图求得。
二. 绘制直方图
1.基础概念 在直方图中,横坐标表示图像中各个像素点的灰度级,纵坐标表示具有该灰度级的像素个数。
假设存在一个3*3的图像,如下图所示,x数组统计的是像素点的灰度级,y数组统计的是具有该灰度级的像素个数。其中,灰度为1的像素共3个,灰度为2的像素共1个,灰度为3的像素共2个,灰度为4的像素共1个,灰度为5的像素共2个。
- x = [1, 2, 3, 4, 5]
- y = [3, 1, 2, 1, 2]
绘制的折线图如下所示:
绘制的直方图如下所示:
如果灰度级为0-255(最小值0黑色,最大值255白色),同样可以绘制对应的直方图,下图是三张图片拼接而成及其对应的直方图。
2.归一化直方图 该直方图的横坐标表示图像中各个像素点的灰度级,纵坐标表示出现这个灰度级的概率。其计算方法如下: (1) 先计算灰度级及对应像素的个数 x = [1, 2, 3, 4, 5] t = [3, 1, 2, 1, 2]
(2) 统计总的像素个数 n = (3 1 2 1 2) = 9
(3) 统计各个灰度级的出现概率 y = t / n = [3/9, 1/9, 2/9, 1/9, 2/9]
3.绘制直方图 主要调用matplotlib的子库pyplot实现,它提供了类似于Matlab的绘图框架,matplotlib是非常强大基础的一个Python绘图包。Provides a Matlab-like plotting framework. 导入代码如下:
代码语言:javascript复制import matplotlib.pyplot as plt
其中绘制直方图主要调用hist函数实现,它根据数据源和像素级绘制直方图。函数原型如下:
代码语言:javascript复制hist(数据源, 像素级)
参数:
数据源必须是一维数组,通常需要通过函数ravel()拉直图像
像素级一般是256,表示[0, 255]
函数ravel()将多维数组降为一维数组,格式为: 一维数组 = 多维数组.ravel()
4.代码实现
代码语言:javascript复制#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
src = cv2.imread('test01.jpg')
cv2.imshow("src", src)
cv2.waitKey(0)
cv2.destroyAllWindows()
plt.hist(src.ravel(), 256)
plt.show()
输出结果如下所示:
三. 使用OpenCV统计绘制直方图
1.函数原型 前面讲解调用matplotlib库绘制直方图,接下来讲解使用OpenCV统计绘制直方图的例子。
- 直方图横坐标:图像中各个像素点的灰度级
- 直方图纵坐标:具有该灰度级的像素个数
主要调用函数calcHist()实现:
- hist = cv2.calcHist(images, channels, mask, histSize, ranges, accumulate)
参数:
- hist表示直方图,返回的是一个二维数组
- images表示原始图像
- channels表示指定通道,通道编号需要用中括号括起,输入图像是灰度图像时,它的值为[0],彩色图像则为[0]、[1]、[2],分别表示B、G、R
- mask表示掩码图像,统计整副图像的直方图,设为None,统计图像的某一部分直方图时,需要掩码图像
- histSize表示BINS的数量,参数子集的数目,如下图当bins=3表示三个灰度级
- ranges表示像素值范围,例如[0, 255]
- accumulate表示累计叠加标识,默认为false,如果被设置为true,则直方图在开始分配时不会被清零,该参数允许从多个对象中计算单个直方图,或者用于实时更新直方图;多个直方图的累积结果用于对一组图像的直方图计算
2.代码实现 首先计算图像灰度级的基本大小、形状及内容。
代码语言:javascript复制#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
src = cv2.imread('test01.jpg')
#参数:原图像 通道[0]-B 掩码 BINS为256 像素范围0-255
hist = cv2.calcHist([src], [0], None, [256], [0,255])
print(type(hist))
print(hist.size)
print(hist.shape)
print(hist)
输出结果如下所示:
下面是绘制图像的代码,首先补充一些matplotlib库绘制图像代码,也推荐我的文章。
- 六.Numpy、Pandas和Matplotlib包基础知识
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#绘制sin函数曲线
x1 = np.arange(0, 6, 0.1)
y1 = np.sin(x1)
plt.plot(x1, y1)
#绘制坐标点折现
x2 = [0, 1, 2, 3, 4, 5, 6]
y2 = [0.3, 0.4, 2.5, 3.4, 4, 5.8, 7.2]
plt.plot(x2, y2)
#省略有规则递增的x2参数
y3 = [0, 0.5, 1.5, 2.4, 4.6, 8]
plt.plot(y3, color="r")
plt.show()
输出结果有三条线,如下所示:
最后给出调用calcHist()计算B、G、R灰度级并绘制图形的代码。
代码语言:javascript复制#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
src = cv2.imread('test01.jpg')
histb = cv2.calcHist([src], [0], None, [256], [0,255])
histg = cv2.calcHist([src], [1], None, [256], [0,255])
histr = cv2.calcHist([src], [2], None, [256], [0,255])
cv2.imshow("src", src)
cv2.waitKey(0)
cv2.destroyAllWindows()
plt.plot(histb, color='b')
plt.plot(histg, color='g')
plt.plot(histr, color='r')
plt.show()
输出结果如下图所示:
四.总结
写到这里,本篇文章介绍结束,基础性知识希望对您有所帮助。
- 一.灰度直方图基本概率
- 二.绘制直方图
- 三.使用OpenCV统计绘制直方图
- 四.总结
这系列文章是当时2018年考博期间撰写的,感觉还不错。同时,回想2018年当时写这篇文章的感言,挺有意思的,每个阶段都有每个阶段的感受,并不断激励自己进步。
三尺讲台,三寸舌, 三千桃李,三杆笔。 再累再苦,站在讲台前就是最美的自己,几个月的烦恼和忧愁都已消失,真的好享受这种状态,仿佛散着光芒,终于给低年级的同学上课了越早培养编程兴趣越好,恨不能倾囊相授。即使当一辈子的教书匠,平平淡淡也喜欢,而且总感觉给学生讲课远不是课酬和职称所能比拟,这就是所谓的事业,所谓的爱好。
源代码下载地址,记得帮忙点star和关注喔!
- https://github.com/eastmountyxz/ ImageProcessing-Python
“娜璋AI安全之家” 主要围绕Python大数据分析、网络空间安全、人工智能、Web渗透及攻防技术进行讲解,同时分享CCF、SCI、南核北核论文的算法实现。娜璋之家会更加系统,并重构作者的所有文章,从零讲解Python和安全,写了近十年文章,真心想把自己所学所感所做分享出来,还请各位多多指教,真诚邀请您的关注!谢谢。
(By:Eastmount 2022-05-10 夜于武汉 )
参考文献,在此感谢这些大佬,共勉!
- [1] 冈萨雷斯. 数字图像处理(第3版)[M]. 电子工业出版社, 2013.
- [2] 罗子江. Python中的图像处理[M]. 科学出版社, 2020.
- [3] https://blog.csdn.net/Eastmount
- [4]《计算机图形学》基础知识
- [5] 部分内容参考网易云lilizong老师的视频