pytorch BatchNorm参数详解,计算过程

2022-09-01 15:17:22 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

目录

说明

BatchNorm1d参数

num_features

eps

momentum

affine

track_running_stats

BatchNorm1d训练时前向传播

BatchNorm1d评估时前向传播

总结


说明

网络训练时和网络评估时,BatchNorm模块的计算方式不同。如果一个网络里包含了BatchNorm,则在训练时需要先调用train(),使网络里的BatchNorm模块的training=True(默认是True),在网络评估时,需要先调用eval(),使网络里的BatchNorm模块的training=False。

BatchNorm1d参数

代码语言:javascript复制
torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

num_features

输入维度是(N, C, L)时,num_features应该取C;这里N是batch size,C是数据的channel,L是数据长度。

输入维度是(N, L)时,num_features应该取L;这里N是batch size,L是数据长度,这时可以认为每条数据只有一个channel,省略了C

eps

对输入数据进行归一化时加在分母上,防止除零,详情见下文。

momentum

更新全局均值running_mean和方差running_var时使用该值进行平滑,详情见下文。

affine

设为True时,BatchNorm层才会学习参数

,否则不包含这两个变量,变量名是weightbias,详情见下文。

track_running_stats

设为True时,BatchNorm层会统计全局均值running_mean和方差running_var,详情见下文。

BatchNorm1d训练时前向传播

首先对输入batch求和,并用这两个结果把batch归一化,使其均值为0,方差为1。归一化公式用到了eps(),即。如下输入内容,shape是(3, 4),即batch_size=3,此时num_features需要传入4。

如果==True,则使用momentum更新模块内部的(初值是[0., 0., 0., 0.])和(初值是[1., 1., 1., 1.]),更新公式是,其中代表更新后的和,表示更新前的和,表示当前batch的均值和无偏样本方差。

如果==False,则BatchNorm中不含有和两个变量。

如果==True,则对归一化后的batch进行仿射变换,即乘以模块内部的(初值是[1., 1., 1., 1.])然后加上模块内部的(初值是[0., 0., 0., 0.]),这两个变量会在反向传播时得到更新。

如果==False,则BatchNorm中不含有和两个变量,什么都都不做。

BatchNorm1d评估时前向传播

  1. 如果track_running_stats==True,则对batch进行归一化,公式为

,注意这里的均值和方差是running_meanrunning_var,在网络训练时统计出来的全局均值和无偏样本方差。

  1. 如果track_running_stats==False,则对batch进行归一化,公式为

,注意这里的均值和方差是batch自己的mean和var,此时BatchNorm里不含有running_meanrunning_var。注意此时使用的是无偏样本方差(和训练时不同),因此如果batch_size=1,会使分母为0,就报错了。

  1. 如果affine==True,则对归一化后的batch进行放射变换,即乘以模块内部的weight然后加上模块内部的bias,这两个变量都是网络训练时学习到的。
  2. 如果affine==False,则BatchNorm中不含有weightbias两个变量,什么都不做。

总结

在使用batchNorm时,通常只需要指定num_features就可以了。网络训练前调用train(),训练时BatchNorm模块会统计全局running_meanrunning_var,学习weightbias,即文献中的

。网络评估前调用eval(),评估时,对传入的batch,使用统计的全局running_meanrunning_var对batch进行归一化,然后使用学习到的weightbias进行仿射变换。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/141980.html原文链接:https://javaforall.cn

0 人点赞