要求
根据20Newsgroups数据集进行聚类,将聚类结果显示给用户,用户可以选择其中的一个类,标为关注,类的关键词作为主题,用户就可以跟踪这主题、了解主题的文章内容。
导入相关库
代码语言:javascript复制from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import numpy as np
import re
import string
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn.datasets import fetch_20newsgroups
from wordcloud import WordCloud
%matplotlib inline
数据获取
使用sklearn的fetch_20newsgroups下载数据
代码语言:javascript复制dataset = fetch_20newsgroups(
download_if_missing=True, remove=('headers', 'footers', 'quotes'))
数据预览
可以看到,新闻数据共有20个分类
对各类别的数量进行可视化处理
代码语言:javascript复制dataset.target_names
代码语言:javascript复制['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']
代码语言:javascript复制# 对各类别的数量进行可视化
targets, frequency = np.unique(dataset.target, return_counts=True)
targets_str = np.array(dataset.target_names)
fig = plt.figure(figsize=(10, 5), dpi=80, facecolor='w', edgecolor='k')
plt.bar(targets_str, frequency)
plt.xticks(rotation=90)
plt.title('Class distribution of 20 Newsgroups Training Data')
plt.xlabel('News Group')
plt.ylabel('Number')
plt.show()
数据预处理
为了提升聚类的准确性,在聚类之前先对数据进行预处理,剔除数据中的数字和标点,并将大写字母转换成小写
代码语言:javascript复制dataset_df = pd.DataFrame({'data': dataset.data, 'target': dataset.target})
# 使用正则表达式进行数据处理
def alphanumeric(x):
return re.sub(r"""w*dw*""", ' ', x)
def punc_lower(x):
return re.sub('[%s]' % re.escape(string.punctuation), ' ', x.lower())
dataset_df['data'] = dataset_df.data.map(alphanumeric).map(punc_lower)
处理后的数据部分展示
代码语言:javascript复制dataset_df.data
代码语言:javascript复制0 i was wondering if anyone out there could enli...
1 a fair number of brave souls who upgraded thei...
2 well folks my mac plus finally gave up the gh...
3 ndo you have weitek s address phone number ...
4 from article world std com by tombaker ...
...
11309 dn from nyeda cnsvax uwec edu david nye nd...
11310 i have a very old mac and a mac plus both...
11311 i just installed a cpu in a clone motherbo...
11312 nwouldn t this require a hyper sphere in ...
11313 stolen from pasadena between and pm on...
Name: data, Length: 11314, dtype: object
K-means聚类
使用K-means聚类方法,将数据聚成20类
代码语言:javascript复制texts = dataset.data
target = dataset.target
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(texts)
代码语言:javascript复制number_of_clusters = 20
model = KMeans(n_clusters=number_of_clusters,
init='k-means ',
max_iter=100,
n_init=1)
model.fit(X)
代码语言:javascript复制KMeans(max_iter=100, n_clusters=20, n_init=1)
查看聚类后每个类别中的关键词,每个类别展示20个
代码语言:javascript复制dict_list = []
order_centroids = model.cluster_centers_.argsort()[:, ::-1]
terms = vectorizer.get_feature_names()
for i in range(number_of_clusters):
dict = {}
print("Cluster %d:" % i),
for ind in order_centroids[i, :20]:
print(' %s' % terms[ind])
dict[terms[ind]] = model.cluster_centers_[i][ind]
dict_list.append(dict)
类别预测
根据模型来划分测试集的类别
代码语言:javascript复制# 对单个词进行类别划分
X = vectorizer.transform([texts[400]])
cluster = model.predict(X)[0]
# print("这个词属于第{0}类".format(cluster))
代码语言:javascript复制# 测试集预测结果可视化
count_target = dataset_df['target'].value_counts()
plt.figure(figsize=(8, 4))
sns.barplot(count_target.index, count_target.values, alpha=0.8)
plt.ylabel('Number', fontsize=12)
plt.xlabel('Target', fontsize=12)
词云图展示
对每个类别进行词云图展示
代码语言:javascript复制for i in range(20):
wordcloud = WordCloud(background_color="white", relative_scaling=0.5,
normalize_plurals=False).generate_from_frequencies(dict_list[i])
fig = plt.figure(figsize=(8, 6))
plt.axis('off')
plt.title('Cluster %d:' % i, fontsize='15')
plt.imshow(wordcloud)
plt.show()
这里仅放两个类别图片以展示。