大家好,又见面了,我是你们的朋友全栈君。
WeakHashMap继承于AbstractMap,同时实现了Map接口。
和HashMap一样,WeakHashMap也是一个散列表,存储的内容也是键值对 key-value映射,并且键和值都可以是null。WeakHashMap的键都是弱键,给定一个键,其映射的存在并不阻止垃圾回收器对该键的丢弃,使该键成为可终止,然后被回收。弱键的原理就是Entry继承了WeakReference接口,当GC 回收时,”弱键“同时也会被添加到ReferenceQueue队列中。
实现的步骤:
(1)新建WeakHashMap,将键值对添加到WeakHashMap中,WeakHashMap同样也是通过table保存Entry(键值对),每一个Entry实际上是一个单向链表。
(2)当某个弱键不再被其他对象引用,并被GC回收时,在GC回收该弱键时,这个弱键也同时会被添加到ReferenceQueue(queue)队列中。
(3)下一次需要操作WeakHashMap时,会先同步table和queue。table中保存了全部的键值对,而queue中保存被GC回收的键值对,同时会删除table中被GC回收的键值对。WeakHashMap也不是线程安全的。
WeakHashMap的关系图:
(1)WeakHashMap继承于AbstractMap,并且实现了Map接口。
(2)WeakHashMap是哈希表,它的键时弱键,WeakHashMap同样有几个重要的成员变量:table,size,threshold,loadFactor,modCount,queue。
table一个Entry[]数组类型,而每个Entry实际上就是一个单向链表,哈希表的key-value键值对都是存储在Entry数组中的。
size是Hashtable的大小,它是Hashtable保存的键值对的数量。
threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=”容量*加载因子“
loadFactor加载因子
modCount是用来实现fail-fast机制
queue保存的是已经被GC清楚的弱引用的键。
WeakHashMap主要的函数
代码语言:javascript复制void clear()
Object clone()
boolean containsKey(Object key)
boolean containsValue(Object value)
Set<Entry<K, V>> entrySet()
V get(Object key)
boolean isEmpty()
Set<K> keySet()
V put(K key, V value)
void putAll(Map<? extends K, ? extends V> map)
V remove(Object key)
int size()
Collection<V> values()
WeakHashMap的遍历方式
(1)遍历WeakHashMap的键值对:首先根据entrySet()获得键值对集合,然后对集合通过迭代器Iterator遍历得到键值。
代码语言:javascript复制Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext())
{
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
}
(2)遍历WeakHashMap的键:首先通过keySet()获取WeakHashMap的键的set集合,通过Iterator迭代器遍历集合来获得键值。
代码语言:javascript复制String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)map.get(key);
}
(3)遍历WeakHashMap的值:首先通过values()获取WeakHashMap的value集合,然后对集合进行迭代获得数据。
代码语言:javascript复制Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext())
{
value = (Integer)iter.next();
}
WeakHashMap示例程序:
代码语言:javascript复制public class Hello {
public static void main(String[] args) throws Exception {
testWeakHashMapAPIs();
}
private static void testWeakHashMapAPIs()
{
// 初始化3个“弱键”
String w1 = new String("one");
String w2 = new String("two");
String w3 = new String("three");
// 新建WeakHashMap
Map wmap = new WeakHashMap();
// 添加键值对
wmap.put(w1, "w1");
wmap.put(w2, "w2");
wmap.put(w3, "w3");
// 打印出wmap
System.out.printf("nwmap:%sn",wmap );
// containsKey(Object key) :是否包含键key
System.out.printf("contains key two : %sn",wmap.containsKey("two"));
System.out.printf("contains key five : %sn",wmap.containsKey("five"));
// containsValue(Object value) :是否包含值value
System.out.printf("contains value 0 : %sn",wmap.containsValue(new Integer(0)));
// remove(Object key) : 删除键key对应的键值对
wmap.remove("three");
System.out.printf("wmap: %sn",wmap );
// ---- 测试 WeakHashMap 的自动回收特性 ----
// 将w1设置null。
// 这意味着“弱键”w1再没有被其它对象引用,调用gc时会回收WeakHashMap中与“w1”对应的键值对
w1 = null;
// 内存回收。这里,会回收WeakHashMap中与“w1”对应的键值对
System.gc();
// 遍历WeakHashMap
Iterator iter = wmap.entrySet().iterator();
while (iter.hasNext())
{
Map.Entry en = (Map.Entry)iter.next();
System.out.printf("next : %s - %sn",en.getKey(),en.getValue());
}
// 打印WeakHashMap的实际大小
System.out.printf(" after gc WeakHashMap size:%sn", wmap.size());
}
}
运行结果:
wmap:{three=w3, one=w1, two=w2}
contains key two : true
contains key five : false
contains value 0 : false
wmap: {one=w1, two=w2}
next : two – w2
after gc WeakHashMap size:1
基于Java8的WeakHashMap源代码:
代码语言:javascript复制public class WeakHashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V> {
private static final int DEFAULT_INITIAL_CAPACITY = 16;//默认初始大小,必须是2的次幂
private static final int MAXIMUM_CAPACITY = 1 << 30;//最大值2的30次方
private static final float DEFAULT_LOAD_FACTOR = 0.75f;//加载因子
Entry<K,V>[] table;
private int size;//数目
private int threshold;//阈值
private final float loadFactor;//加载因子
private final ReferenceQueue<Object> queue = new ReferenceQueue<>();//引用队列
int modCount;//fail-fast
@SuppressWarnings("unchecked")
private Entry<K,V>[] newTable(int n) {
return (Entry<K,V>[]) new Entry<?,?>[n];
}
//构造函数
public WeakHashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Initial Capacity: "
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load factor: "
loadFactor);
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
table = newTable(capacity);
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
}
//初始值的构造函数
public WeakHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//构造函数
public WeakHashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
public WeakHashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) 1,
DEFAULT_INITIAL_CAPACITY),
DEFAULT_LOAD_FACTOR);
putAll(m);
}
// internal utilities
/** * Value representing null keys inside tables. */ private static final Object NULL_KEY = new Object();
/** * Use NULL_KEY for key if it is null. */ private static Object maskNull(Object key) {
return (key == null) ? NULL_KEY : key;
}
/** * Returns internal representation of null key back to caller as null. */ static Object unmaskNull(Object key) {
return (key == NULL_KEY) ? null : key;
}
/** * Checks for equality of non-null reference x and possibly-null y. By * default uses Object.equals. */ private static boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}
/** * Retrieve object hash code and applies a supplemental hash function to the * result hash, which defends against poor quality hash functions. This is * critical because HashMap uses power-of-two length hash tables, that * otherwise encounter collisions for hashCodes that do not differ * in lower bits. */ //计算k的hash
final int hash(Object k) {
int h = k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/** * Returns index for hash code h. */ private static int indexFor(int h, int length) {
return h & (length-1);
}
/** * Expunges stale entries from the table. */ private void expungeStaleEntries() {
for (Object x; (x = queue.poll()) != null; ) {
synchronized (queue) {
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) x;
int i = indexFor(e.hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> p = prev;
while (p != null) {
Entry<K,V> next = p.next;
if (p == e) {
if (prev == e)
table[i] = next;
else
prev.next = next;
// Must not null out e.next;
// stale entries may be in use by a HashIterator
e.value = null; // Help GC
size--;
break;
}
prev = p;
p = next;
}
}
}
}
/** * Returns the table after first expunging stale entries. */ private Entry<K,V>[] getTable() {
expungeStaleEntries();
return table;
}
/** * Returns the number of key-value mappings in this map. * This result is a snapshot, and may not reflect unprocessed * entries that will be removed before next attempted access * because they are no longer referenced. */ //返回数目
public int size() {
if (size == 0)
return 0;
expungeStaleEntries();
return size;
}
/** * Returns <tt>true</tt> if this map contains no key-value mappings. * This result is a snapshot, and may not reflect unprocessed * entries that will be removed before next attempted access * because they are no longer referenced. */ //判断是否为空
public boolean isEmpty() {
return size() == 0;
}
/** * Returns the value to which the specified key is mapped, * or {
@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {
@code k} to a value {
@code v} such that {
@code (key==null ? k==null : * key.equals(k))}, then this method returns {
@code v}; otherwise * it returns {
@code null}. (There can be at most one such mapping.) * * <p>A return value of {
@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {
@code null}. * The {
@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ //通过key获得value
public V get(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int index = indexFor(h, tab.length);
Entry<K,V> e = tab[index];
while (e != null) {
if (e.hash == h && eq(k, e.get()))
return e.value;
e = e.next;
}
return null;
}
/** * Returns <tt>true</tt> if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return <tt>true</tt> if there is a mapping for <tt>key</tt>; * <tt>false</tt> otherwise */ //判断是否包含某个key
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/** * Returns the entry associated with the specified key in this map. * Returns null if the map contains no mapping for this key. */ //通过key获得entry
Entry<K,V> getEntry(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int index = indexFor(h, tab.length);
Entry<K,V> e = tab[index];
while (e != null && !(e.hash == h && eq(k, e.get())))
e = e.next;
return e;
}
/** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for this key, the old * value is replaced. * * @param key key with which the specified value is to be associated. * @param value value to be associated with the specified key. * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) */ //插入key和value
public V put(K key, V value) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int i = indexFor(h, tab.length);
for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
if (h == e.hash && eq(k, e.get())) {
V oldValue = e.value;
if (value != oldValue)
e.value = value;
return oldValue;
}
}
modCount ;
Entry<K,V> e = tab[i];
tab[i] = new Entry<>(k, value, queue, h, e);
if ( size >= threshold)
resize(tab.length * 2);
return null;
}
/** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ //跳转大小
void resize(int newCapacity) {
Entry<K,V>[] oldTable = getTable();
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry<K,V>[] newTable = newTable(newCapacity);
transfer(oldTable, newTable);
table = newTable;
/*
* If ignoring null elements and processing ref queue caused massive
* shrinkage, then restore old table. This should be rare, but avoids
* unbounded expansion of garbage-filled tables.
*/
if (size >= threshold / 2) {
threshold = (int)(newCapacity * loadFactor);
} else {
expungeStaleEntries();
transfer(newTable, oldTable);
table = oldTable;
}
}
/** Transfers all entries from src to dest tables */ private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
for (int j = 0; j < src.length; j) {
Entry<K,V> e = src[j];
src[j] = null;
while (e != null) {
Entry<K,V> next = e.next;
Object key = e.get();
if (key == null) {
e.next = null; // Help GC
e.value = null; // " "
size--;
} else {
int i = indexFor(e.hash, dest.length);
e.next = dest[i];
dest[i] = e;
}
e = next;
}
}
}
/** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for any * of the keys currently in the specified map. * * @param m mappings to be stored in this map. * @throws NullPointerException if the specified map is null. */ public void putAll(Map<? extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
/*
* Expand the map if the map if the number of mappings to be added
* is greater than or equal to threshold. This is conservative; the
* obvious condition is (m.size() size) >= threshold, but this
* condition could result in a map with twice the appropriate capacity,
* if the keys to be added overlap with the keys already in this map.
* By using the conservative calculation, we subject ourself
* to at most one extra resize.
*/
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
/** * Removes the mapping for a key from this weak hash map if it is present. * More formally, if this map contains a mapping from key <tt>k</tt> to * value <tt>v</tt> such that <code>(key==null ? k==null : * key.equals(k))</code>, that mapping is removed. (The map can contain * at most one such mapping.) * * <p>Returns the value to which this map previously associated the key, * or <tt>null</tt> if the map contained no mapping for the key. A * return value of <tt>null</tt> does not <i>necessarily</i> indicate * that the map contained no mapping for the key; it's also possible * that the map explicitly mapped the key to <tt>null</tt>. * * <p>The map will not contain a mapping for the specified key once the * call returns. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> */ //根据key删除
public V remove(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int i = indexFor(h, tab.length);
Entry<K,V> prev = tab[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
if (h == e.hash && eq(k, e.get())) {
modCount ;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return e.value;
}
prev = e;
e = next;
}
return null;
}
/** Special version of remove needed by Entry set */ boolean removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return false;
Entry<K,V>[] tab = getTable();
Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
Object k = maskNull(entry.getKey());
int h = hash(k);
int i = indexFor(h, tab.length);
Entry<K,V> prev = tab[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
if (h == e.hash && e.equals(entry)) {
modCount ;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return true;
}
prev = e;
e = next;
}
return false;
}
/** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ //清空
public void clear() {
// clear out ref queue. We don't need to expunge entries
// since table is getting cleared.
while (queue.poll() != null)
;
modCount ;
Arrays.fill(table, null);
size = 0;
// Allocation of array may have caused GC, which may have caused
// additional entries to go stale. Removing these entries from the
// reference queue will make them eligible for reclamation.
while (queue.poll() != null)
;
}
/** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified value */ //判断是否包含某个值
public boolean containsValue(Object value) {
if (value==null)
return containsNullValue();
Entry<K,V>[] tab = getTable();
for (int i = tab.length; i-- > 0;)
for (Entry<K,V> e = tab[i]; e != null; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
/** * Special-case code for containsValue with null argument */ //判断是否有空值
private boolean containsNullValue() {
Entry<K,V>[] tab = getTable();
for (int i = tab.length; i-- > 0;)
for (Entry<K,V> e = tab[i]; e != null; e = e.next)
if (e.value==null)
return true;
return false;
}
/** * The entries in this hash table extend WeakReference, using its main ref * field as the key. */ //entry继承了虚引用
private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
V value;
final int hash;
Entry<K,V> next;
/** * Creates new entry. */ Entry(Object key, V value,
ReferenceQueue<Object> queue,
int hash, Entry<K,V> next) {
super(key, queue);
this.value = value;
this.hash = hash;
this.next = next;
}
@SuppressWarnings("unchecked")
public K getKey() {
return (K) WeakHashMap.unmaskNull(get());
}
public V getValue() {
return value;
}
public V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
K k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
V v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
public int hashCode() {
K k = getKey();
V v = getValue();
return Objects.hashCode(k) ^ Objects.hashCode(v);
}
public String toString() {
return getKey() "=" getValue();
}
}
private abstract class HashIterator<T> implements Iterator<T> {
private int index;
private Entry<K,V> entry;
private Entry<K,V> lastReturned;
private int expectedModCount = modCount;
/** * Strong reference needed to avoid disappearance of key * between hasNext and next */ private Object nextKey;
/** * Strong reference needed to avoid disappearance of key * between nextEntry() and any use of the entry */ private Object currentKey;
HashIterator() {
index = isEmpty() ? 0 : table.length;
}
public boolean hasNext() {
Entry<K,V>[] t = table;
while (nextKey == null) {
Entry<K,V> e = entry;
int i = index;
while (e == null && i > 0)
e = t[--i];
entry = e;
index = i;
if (e == null) {
currentKey = null;
return false;
}
nextKey = e.get(); // hold on to key in strong ref
if (nextKey == null)
entry = entry.next;
}
return true;
}
/** The common parts of next() across different types of iterators */ protected Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (nextKey == null && !hasNext())
throw new NoSuchElementException();
lastReturned = entry;
entry = entry.next;
currentKey = nextKey;
nextKey = null;
return lastReturned;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
WeakHashMap.this.remove(currentKey);
expectedModCount = modCount;
lastReturned = null;
currentKey = null;
}
}
private class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
private class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
// Views
private transient Set<Map.Entry<K,V>> entrySet;
/** * Returns a {
@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own <tt>remove</tt> operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> * operations. It does not support the <tt>add</tt> or <tt>addAll</tt> * operations. */ public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return new KeyIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
if (containsKey(o)) {
WeakHashMap.this.remove(o);
return true;
}
else
return false;
}
public void clear() {
WeakHashMap.this.clear();
}
public Spliterator<K> spliterator() {
return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
/** * Returns a {
@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own <tt>remove</tt> operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Collection.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not * support the <tt>add</tt> or <tt>addAll</tt> operations. */ public Collection<V> values() {
Collection<V> vs = values;
return (vs != null) ? vs : (values = new Values());
}
private class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return new ValueIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
WeakHashMap.this.clear();
}
public Spliterator<V> spliterator() {
return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
/** * Returns a {
@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own <tt>remove</tt> operation, or through the * <tt>setValue</tt> operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and * <tt>clear</tt> operations. It does not support the * <tt>add</tt> or <tt>addAll</tt> operations. */ public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o);
}
public int size() {
return WeakHashMap.this.size();
}
public void clear() {
WeakHashMap.this.clear();
}
private List<Map.Entry<K,V>> deepCopy() {
List<Map.Entry<K,V>> list = new ArrayList<>(size());
for (Map.Entry<K,V> e : this)
list.add(new AbstractMap.SimpleEntry<>(e));
return list;
}
public Object[] toArray() {
return deepCopy().toArray();
}
public <T> T[] toArray(T[] a) {
return deepCopy().toArray(a);
}
public Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
@SuppressWarnings("unchecked")
@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action);
int expectedModCount = modCount;
Entry<K, V>[] tab = getTable();
for (Entry<K, V> entry : tab) {
while (entry != null) {
Object key = entry.get();
if (key != null) {
action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
}
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
@SuppressWarnings("unchecked")
@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function);
int expectedModCount = modCount;
Entry<K, V>[] tab = getTable();;
for (Entry<K, V> entry : tab) {
while (entry != null) {
Object key = entry.get();
if (key != null) {
entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
}
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
/** * Similar form as other hash Spliterators, but skips dead * elements. */ static class WeakHashMapSpliterator<K,V> {
final WeakHashMap<K,V> map;
WeakHashMap.Entry<K,V> current; // current node
int index; // current index, modified on advance/split
int fence; // -1 until first use; then one past last index
int est; // size estimate
int expectedModCount; // for comodification checks
WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
int fence, int est,
int expectedModCount) {
this.map = m;
this.index = origin;
this.fence = fence;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getFence() { // initialize fence and size on first use
int hi;
if ((hi = fence) < 0) {
WeakHashMap<K,V> m = map;
est = m.size();
expectedModCount = m.modCount;
hi = fence = m.table.length;
}
return hi;
}
public final long estimateSize() {
getFence(); // force init
return (long) est;
}
}
static final class KeySpliterator<K,V>
extends WeakHashMapSpliterator<K,V>
implements Spliterator<K> {
KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public KeySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo hi) >>> 1;
return (lo >= mid) ? null :
new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super K> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap<K,V> m = map;
WeakHashMap.Entry<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry<K,V> p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i ];
else {
Object x = p.get();
p = p.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept(k);
}
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super K> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry<K,V>[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index ];
else {
Object x = current.get();
current = current.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept(k);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return Spliterator.DISTINCT;
}
}
static final class ValueSpliterator<K,V>
extends WeakHashMapSpliterator<K,V>
implements Spliterator<V> {
ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public ValueSpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo hi) >>> 1;
return (lo >= mid) ? null :
new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super V> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap<K,V> m = map;
WeakHashMap.Entry<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry<K,V> p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i ];
else {
Object x = p.get();
V v = p.value;
p = p.next;
if (x != null)
action.accept(v);
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super V> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry<K,V>[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index ];
else {
Object x = current.get();
V v = current.value;
current = current.next;
if (x != null) {
action.accept(v);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return 0;
}
}
static final class EntrySpliterator<K,V>
extends WeakHashMapSpliterator<K,V>
implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public EntrySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo hi) >>> 1;
return (lo >= mid) ? null :
new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap<K,V> m = map;
WeakHashMap.Entry<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry<K,V> p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i ];
else {
Object x = p.get();
V v = p.value;
p = p.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept
(new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
}
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry<K,V>[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index ];
else {
Object x = current.get();
V v = current.value;
current = current.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept
(new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return Spliterator.DISTINCT;
}
}
}
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/138205.html原文链接:https://javaforall.cn