cv2.SIFT()
cv2.SURF()
cv2.HOGDescriptor()
使用cv2.SIFT的一个样例:(cv2.SURF使用与之类似)
代码语言:javascript复制#coding=utf-8
import cv2
import scipy as sp
img1 = cv2.imread('x1.jpg',0) # queryImage
img2 = cv2.imread('x2.jpg',0) # trainImage
# Initiate SIFT detector
sift = cv2.SIFT()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50) # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
print 'matches...',len(matches)
# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append(m)
print 'good',len(good)
# #####################################
# visualization
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
view = sp.zeros((max(h1, h2), w1 w2, 3), sp.uint8)
view[:h1, :w1, 0] = img1
view[:h2, w1:, 0] = img2
view[:, :, 1] = view[:, :, 0]
view[:, :, 2] = view[:, :, 0]
for m in good:
# draw the keypoints
# print m.queryIdx, m.trainIdx, m.distance
color = tuple([sp.random.randint(0, 255) for _ in xrange(3)])
#print 'kp1,kp2',kp1,kp2
cv2.line(view, (int(kp1[m.queryIdx].pt[0]), int(kp1[m.queryIdx].pt[1])) , (int(kp2[m.trainIdx].pt[0] w1), int(kp2[m.trainIdx].pt[1])), color)
cv2.imshow("view", view)
cv2.waitKey()
代码语言:javascript复制
代码语言:javascript复制cv2.HOGDescriptor()的例子:还可以参考:https://www.programcreek.com/python/example/84776/cv2.HOGDescriptor
代码语言:javascript复制def createTrainingInstances(self, images):
start = time.time()
hog = cv2.HOGDescriptor()
instances = []
for img, label in images:
# print img
img = read_color_image(img)
img = cv2.resize(img, (128, 128), interpolation = cv2.INTER_AREA)
descriptor = hog.compute(img)
if descriptor is None:
descriptor = []
else:
descriptor = descriptor.ravel()
pairing = Instance(descriptor, label)
instances.append(pairing)
end = time.time() - start
self.training_instances = instances
print "HOG TRAIN SERIAL: %d images -> %f" % (len(images), end)
代码语言:javascript复制def createTestingInstances(self, images):
start = time.time()
hog = cv2.HOGDescriptor()
instances = []
for img, label in images:
# print img
img = read_color_image(img)
img = cv2.resize(img, (128, 128), interpolation = cv2.INTER_AREA)
descriptor = hog.compute(img)
if descriptor is None:
descriptor = []
else:
descriptor = descriptor.ravel()
pairing = Instance(descriptor, label)
instances.append(pairing)
end = time.time() - start
self.testing_instances = instances
print "HOG TEST SERIAL: %d images -> %f" % (len(images), end)
还有:
代码语言:javascript复制def get_hog(image):
# winSize = (64,64)
winSize = (image.shape[1], image.shape[0])
blockSize = (8,8)
# blockSize = (16,16)
blockStride = (8,8)
cellSize = (8,8)
nbins = 9
derivAperture = 1
winSigma = 4.
histogramNormType = 0
L2HysThreshold = 2.0000000000000001e-01
gammaCorrection = 0
nlevels = 64
hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,
histogramNormType,L2HysThreshold,gammaCorrection,nlevels)
#compute(img[, winStride[, padding[, locations]]]) -> descriptors
winStride = (8,8)
padding = (8,8)
locations = [] # (10, 10)# ((10,20),)
hist = hog.compute(image,winStride,padding,locations)
return hist