目标检测系列:
目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作
目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享
目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练
目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN
目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式
目标检测(object detection)系列(六) SSD:兼顾效率和准确性
目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN
目标检测(object detection)系列(八) YOLOv2:更好,更快,更强
目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言
目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度
目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作
目标检测(object detection)系列(十二) CornerNet:anchor free的开端
目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS
目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测
目标检测扩展系列:
目标检测(object detection)扩展系列(一) Selective Search:选择性搜索算法
目标检测(object detection)扩展系列(二) OHEM:在线难例挖掘
目标检测(object detection)扩展系列(三) Faster R-CNN,YOLO,SSD,YOLOv2,YOLOv3在损失函数上的区别
简介:one-stage检测器巅峰之作
在RetinaNet之前,目标检测领域一个普遍的现象就是two-stage的方法有更高的准确率,但是耗时也更严重,比如经典的Faster R-CNN,R-FCN,FPN等,而one-stage的方法效率更高,但是准确性要差一些,比如经典的YOLOv2,YOLOv3和SSD。这是两类方法本质上的思想不同带来这个普遍的结果,而RetinaNet的出现,在一定程度上改善了这个问题,让one-stage的方法具备了比two-stage方法更高的准确性,而且耗时更低。RetinaNet的论文是《Focal Loss for Dense Object Detection》。
RetinaNet原理
设计理念
two-stage方法会分两步完成目标检测,首先生产区域建议框,然后在对框做分类判别和回归矫正,而one-stage方法只有一步就完成了分类判别和bbox的回归。也就是因为这个不同,造成了上面的特点,首先耗时很好理解,因为two-stage有两步,而第二步的子网络要多次的重复输出,所以它不可避免的慢。那么造成two-stage效果好,one-stage效果偏差的本质原因是什么呢?
是因为anchor box后正负样本的严重不平衡问题导致的,我们举个例子说明有多不平衡,YOLOv2的anchor有845个,SSD的anchor有8732个,更多的anchor提供了更多的假设,对模型的召回率(尤其是小目标)有比较大的意义,但是一张正常的自然图像上,不会有这么多的目标的,这就势必会造成后续任务中的样本不平衡问题,而且由于是one-stage的,更多的anchor带来的好处和更严重的样本不平衡的矛盾没办法在结构上解决。
那么为什么two-stage方法不收影响呢?two-stage方法也有很多甚至更多的anchor啊,比如FPN有200k个,这和YOLOv2的8k个都不是一个量级了。因为是two-stage的结构,所以区域建议框可以选,想怎么选就怎么选,FPN在三个方面消除正负样本严重失衡的问题:
- FPN会选择与Ground turth的IOU>0.7的做正样本,与Ground turth的IOU<0.3的做负样本,这拉大正负样本间的差异;
- FPN的RPN最后的输出会控制在1000-2000个之间,控制样本数量;
- FPN组合每一次用于训练的minibatch,正负样本比例为1:3。
而就是因为one-stage的结构没办法二次筛选样本,那能不能总别的地方改进,进而减小这个影响。这个地方就是损失函数,因为样本的平衡与否,最终要影响要落下损失和优化上。所以RetinaNet提出了Focal loss,解决了正负样本区域极不平衡时目标检测loss易被大批量负样本所左右的问题。
Focal loss
Focal Loss是一种改进的交叉熵损失,一般情况下交叉熵损失在二分类时长这样:
换一种形式,就变成这样:
定义p_{t} :
那么CE(p,y)=CE(p_{t})=-log(p_{t}) 。 平衡交叉熵损失的一般做法是为正例引入一个因子alphain[0,1] ,那么对应的,负例的因子就是1-alpha 。这里需要注意一下,文中提到了定义因子alpha_{t} 的方式和定义p_{t} 是相似的,也就说是:
有了这个alpha_{t} 之后,平衡交叉熵损失才可以写为:
这个公式展开之后其实是这样的:
但是alpha 是个固定的系数,它没办法去区分哪些样本难,哪些样本容易,所以在平衡交叉熵的基础上,Focal loss做了改进,进入(1-p_{t})^{gamma } ,其中gamma 是一个超参数,所以Focal loss的表达式就是:
那为啥这样的形式就比平衡交叉熵好呢?我们假设gamma 为1,系数就变成了1-p_{t} ,在这个基础上,我们按照上面的方式展开FL(p_{t}) ,其实就是这样子:
由于交叉熵前做了softmax,所以p
一定是个正数,这个因子加上不会改变原有损失的符号,然后我们举例说明它怎么区分难易样本,p 是正样本的预测值:
- 对于一个正例,模型认为它简单,那么p 会趋近于1,1-p 会趋近于0,损失就会变小,相反的就会变大。
- 对于一个负例,模型认为它简单,那么p 会趋近于0,损失就会变小,相反的就会变大。
这就对模型的难易做出了不同的loss值,此外Focal loss还有一个超参数gamma ,它起到了对因子成幂次,由于底数一定是一个小于1的数,幂次会拉大1-p_{t} 原有的线性倍率。比如1-p_{t} 原本是0.1和0.9,gamma=2 时,会变成0.01和0.81,9倍变成了81倍。这种抑制简单样本,促进难样本的方式,其实和IOU>0.7和IOU<0.3有异曲同工之妙。
加了这东西之后,难易样本区分开了,但是负样本多的问题好像并没有解决掉,所以Focal loss最后又把平衡交叉熵加了回来,实验的时候使用的Focal loss形式是:
这个实验说明了alpha 和gamma 选取,在(a)中,对于平衡交叉熵损失,在alpha=0.75 时,效果是最好的,这符合我们在上面分析的结果,alpha>0.5 可以抑制负样本,但是在Focal loss中,alpha=0.25 和gamma=2 的时候,效果最好,这可能是因为(1-p_{t})^{gamma } 的引入,影响了alpha 的选取。Focal loss是RetinaNet最重要的部分,网络结构、Anchor、损失等其余的东西RetinaNet用的都是之前,我们简单提一下吧。
网络结构
这个是RetinaNet的网络结构,其实就是个FPN,但是它要用FPN做one-stage结构,而不再是two-stage,于是第二个阶段就被省略掉了。在YOLO的文章中,我们就说起过RPN和YOLO的区别,当RPN不再只做有没有物体的分类,而是做是什么物体的类别判断,那一个RPN就能完成整套目标检测任务。
这个思路就在RetinaNet里被使用了,RetinaNet中相当于舍弃了FPN中的Fast R-CNN,改变了FPN中的RPN网络直接做类别的预测。所以RetinaNet中也是有很多子网络的,对应了特征金字塔的层数。
至于更多细节的东西,就不做介绍了。
Anchor Box
RetinaNet选取Anchor Box的策略和FPN相似,一共有5个不同尺度的特征图,分别是32^{2}-512^{2} ,每一层会有三种比例,所以FPN有15种Anchor,但是RetinaNet在这个基础上又加了一个因素,就是每一层特征图上还有一个尺度,它分别是该层特征图尺度的{2^{0},2^{frac{1}{3}},2^{frac{2}{3}}} ,于是RetinaNet的Anchor变成了45个。因为Focal loss的引入,让Anchor的选取变得为所欲为,就是不怕多。╮( ̄▽  ̄)╭
RetinaNet性能评价
这个是RetinaNet的总体结果,在backbone选择ResNet-101,输入分辨率为800时,RetinaNet的AP超过了FPN,虽然比FPN还要慢些,但是这是one-stage的模型第一次使用同样输入分辨率和backbone的情况下,AP可以超过two-stage。当分辨率变成500的时候,RetinaNet具备了很优越的性能。