tensorflow GPU版本配置加速环境

2022-05-12 08:24:57 浏览数 (1)

import tensorflow as tf

tf.test.is_gpu_available()

  1. 背景

环境:Anaconda 、tensorflow_gpu==1.4.0 (这里就用1.4.0版本做演示了,虽然现在的已经是2.0版本了)

如下图是各个版本的cuda版本信息,在安装时需要看清楚,并不是所有的gpu版本都是cuda_8.0版本信息版本信息

材料:cuda_8.0版本链接:https://pan.baidu.com/s/1lzKSWRLl5lYMrYcLjGbVXw

代码语言:txt复制
       提取码:2p9i
  1. 安装cuda

下载之后点击执行cuda

执行cuda安装执行cuda安装
安装过程安装过程

这里可以选择安装的模式:精简也可以选择自定义

安装过程安装过程
安装路径可以自定义,也可以默认。选择自定义得记住安装的路径(后面配置环境变量)安装过程安装过程

后面的就是一键Next,完成即可

  1. 配置系统环境变量

在系统环境变量中配置环境变量,在cuda安装好时会自动的配置两个,另外两个需要自己配置(ps:如果安装路径是自定义的话,需要根据情况自行变动)

配置环境变量配置环境变量
代码语言:txt复制
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0bin

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0libx64

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0libnvvp

在完成了上述的配置后,可以验证一下是否配置成功:

在cmd中输入如下的代码:

代码语言:txt复制
echo %path%

执行结果如下:

系统环境变量配置成功系统环境变量配置成功

4.配置cudnn:

在分享的安装包中有一个压缩包,将其解压会出现三个文件夹:

解压后的文件夹解压后的文件夹

将这三个文件夹里面的文件对应的复制到cuda文件下:

(注意这里是将文件下的文件复制到cuda对应的文件夹里面,而不是将文件夹直接替代cuda下的文件夹(这步特别重要))

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

4.验证:

完成上述的所有步骤后,基本上就完成了大部分了!!!

验证是否成功:

打开pycharm,在里面输入如下测试代码:(前提是已经安装了相应版本tensorflow_gpu,这里给出1.4.0安装方法:在cmd中输入pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.4.0)

代码语言:txt复制
import ctypes  

import imp  

import sys  

def main():  

    try:  

        import tensorflow as tf  

        print("TensorFlow successfully installed.")  

        if tf.test.is_built_with_cuda():  

            print("The installed version of TensorFlow includes GPU support.")  

        else:  

            print("The installed version of TensorFlow does not include GPU support.")  

        sys.exit(0)  

    except ImportError:  

        print("ERROR: Failed to import the TensorFlow module.")  

  

    candidate_explanation = False  

  

    python_version = sys.version_info.major, sys.version_info.minor  

    print("n- Python version is %d.%d." % python_version)  

    if not (python_version == (3, 5) or python_version == (3, 6)):  

        candidate_explanation = True  

        print("- The official distribution of TensorFlow for Windows requires "  

              "Python version 3.5 or 3.6.")  

  

    try:  

        _, pathname, _ = imp.find_module("tensorflow")  

        print("n- TensorFlow is installed at: %s" % pathname)  

    except ImportError:  

        candidate_explanation = False  

        print(""" 

- No module named TensorFlow is installed in this Python environment. You may 

  install it using the command `pip install tensorflow`.""")  

  

    try:  

        msvcp140 = ctypes.WinDLL("msvcp140.dll")  

    except OSError:  

        candidate_explanation = True  

        print(""" 

- Could not load 'msvcp140.dll'. TensorFlow requires that this DLL be 

  installed in a directory that is named in your %PATH% environment 

  variable. You may install this DLL by downloading Microsoft Visual 

  C   2015 Redistributable Update 3 from this URL: 

  https://www.microsoft.com/en-us/download/details.aspx?id=53587""")  

  

    try:  

        cudart64_80 = ctypes.WinDLL("cudart64_80.dll")  

    except OSError:  

        candidate_explanation = True  

        print(""" 

- Could not load 'cudart64_80.dll'. The GPU version of TensorFlow 

  requires that this DLL be installed in a directory that is named in 

  your %PATH% environment variable. Download and install CUDA 8.0 from 

  this URL: https://developer.nvidia.com/cuda-toolkit""")  

  

    try:  

        nvcuda = ctypes.WinDLL("nvcuda.dll")  

    except OSError:  

        candidate_explanation = True  

        print(""" 

- Could not load 'nvcuda.dll'. The GPU version of TensorFlow requires that 

  this DLL be installed in a directory that is named in your %PATH% 

  environment variable. Typically it is installed in 'C:WindowsSystem32'. 

  If it is not present, ensure that you have a CUDA-capable GPU with the 

  correct driver installed.""")  

  

    cudnn5_found = False  

    try:  

        cudnn5 = ctypes.WinDLL("cudnn64_5.dll")  

        cudnn5_found = True  

    except OSError:  

        candidate_explanation = True  

        print(""" 

- Could not load 'cudnn64_5.dll'. The GPU version of TensorFlow 

  requires that this DLL be installed in a directory that is named in 

  your %PATH% environment variable. Note that installing cuDNN is a 

  separate step from installing CUDA, and it is often found in a 

  different directory from the CUDA DLLs. You may install the 

  necessary DLL by downloading cuDNN 5.1 from this URL: 

  https://developer.nvidia.com/cudnn""")  

  

    cudnn6_found = False  

    try:  

        cudnn = ctypes.WinDLL("cudnn64_6.dll")  

        cudnn6_found = True  

    except OSError:  

        candidate_explanation = True  

  

    if not cudnn5_found or not cudnn6_found:  

        print()  

        if not cudnn5_found and not cudnn6_found:  

            print("- Could not find cuDNN.")  

        elif not cudnn5_found:  

            print("- Could not find cuDNN 5.1.")  

        else:  

            print("- Could not find cuDNN 6.")  

            print(""" 

  The GPU version of TensorFlow requires that the correct cuDNN DLL be installed 

  in a directory that is named in your %PATH% environment variable. Note that 

  installing cuDNN is a separate step from installing CUDA, and it is often 

  found in a different directory from the CUDA DLLs. The correct version of 

  cuDNN depends on your version of TensorFlow: 

 

  * TensorFlow 1.2.1 or earlier requires cuDNN 5.1. ('cudnn64_5.dll') 

  * TensorFlow 1.3 or later requires cuDNN 6. ('cudnn64_6.dll') 

 

  You may install the necessary DLL by downloading cuDNN from this URL: 

  https://developer.nvidia.com/cudnn""")  

  

    if not candidate_explanation:  

        print(""" 

- All required DLLs appear to be present. Please open an issue on the 

  TensorFlow GitHub page: https://github.com/tensorflow/tensorflow/issues""")  

    sys.exit(-1)  

if __name__ == "__main__":  

    main()  

如果出现以下结果则表明已经配置成功了:

代码语言:txt复制
TensorFlow successfully installed.

The installed version of TensorFlow includes GPU support.

若是出现以下问题则表明环境配置出错了:

代码语言:txt复制
Could not load ‘cudart64_80.dll’. The GPU version of TensorFlow

requires that this DLL be installed in a directory that is named in

your %PATH% environment variable. Download and install CUDA 8.0 from

this URL: https://developer.nvidia.com/cuda-toolkit

5.模型gpu加速训练:

代码语言:txt复制
# 测试tensorflow_gpu版本加速效果代码

from datetime import datetime

import math

import time

import tensorflow as tf

import os

#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

#os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

batch_size = 32

num_batches = 100

# 该函数用来显示网络每一层的结构,展示tensor的尺寸



def print_activations(t):

print(t.op.name, ' ', t.get_shape().as_list())



# with tf.name_scope('conv1') as scope # 可以将scope之内的variable自动命名为conv1/xxx,便于区分不同组件



def inference(images):

parameters = []

# 第一个卷积层

with tf.name_scope('conv1') as scope:

# 卷积核、截断正态分布

kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64],

dtype=tf.float32, stddev=1e-1), name='weights')

conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')

# 可训练

biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases')

bias = tf.nn.bias_add(conv, biases)

conv1 = tf.nn.relu(bias, name=scope)

print_activations(conv1)

parameters  = [kernel, biases]

# 再加LRN和最大池化层,除了AlexNet,基本放弃了LRN,说是效果不明显,还会减速?

lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name='lrn1')

pool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool1')

print_activations(pool1)

# 第二个卷积层,只有部分参数不同

with tf.name_scope('conv2') as scope:

kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32, stddev=1e-1), name='weights')

conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')

biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32), trainable=True, name='biases')

bias = tf.nn.bias_add(conv, biases)

conv2 = tf.nn.relu(bias, name=scope)

parameters  = [kernel, biases]

print_activations(conv2)

# 稍微处理一下

lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name='lrn2')

pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool2')

print_activations(pool2)

# 第三个

with tf.name_scope('conv3') as scope:

kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384], dtype=tf.float32, stddev=1e-1), name='weights')

conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')

biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32), trainable=True, name='biases')

bias = tf.nn.bias_add(conv, biases)

conv3 = tf.nn.relu(bias, name=scope)

parameters  = [kernel, biases]

print_activations(conv3)

# 第四层

with tf.name_scope('conv4') as scope:

kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], dtype=tf.float32, stddev=1e-1), name='weights')

conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')

biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases')

bias = tf.nn.bias_add(conv, biases)

conv4 = tf.nn.relu(bias, name=scope)

parameters  = [kernel, biases]

print_activations(conv4)

# 第五个

with tf.name_scope('conv5') as scope:

kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1), name='weights')

conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')

biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases')

bias = tf.nn.bias_add(conv, biases)

conv5 = tf.nn.relu(bias, name=scope)

parameters  = [kernel, biases]

print_activations(conv5)

# 之后还有最大化池层

pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool5')

print_activations(pool5)

return pool5, parameters

# 全连接层

# 评估每轮计算时间,第一个输入是tf得Session,第二个是运算算子,第三个是测试名称

# 头几轮有显存加载,cache命中等问题,可以考虑只计算第10次以后的

def time_tensorflow_run(session, target, info_string):

num_steps_burn_in = 10

total_duration = 0.0

total_duration_squared = 0.0

# 进行num_batches num_steps_burn_in次迭代

# 用time.time()记录时间,热身过后,开始显示时间

for i in range(num_batches   num_steps_burn_in):

start_time = time.time()

_ = session.run(target)

duration = time.time() - start_time

if i >= num_steps_burn_in:

if not i % 10:

print('%s:step %d, duration = %.3f' % (datetime.now(), i - num_steps_burn_in, duration))

total_duration  = duration

total_duration_squared  = duration * duration

# 计算每轮迭代品均耗时和标准差sd

mn = total_duration / num_batches

vr = total_duration_squared / num_batches - mn * mn

sd = math.sqrt(vr)

print('%s: %s across %d steps, %.3f  /- %.3f sec / batch' % (datetime.now(), info_string, num_batches, mn, sd))

def run_benchmark():

# 首先定义默认的Graph

with tf.Graph().as_default():

# 并不实用ImageNet训练,知识随机计算耗时

image_size = 224

images = tf.Variable(tf.random_normal([batch_size, image_size, image_size, 3], dtype=tf.float32, stddev=1e-1))

pool5, parameters = inference(images)

init = tf.global_variables_initializer()

sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))

sess.run(init)

# 下面直接用pool5传入训练(没有全连接层)

# 只是做做样子,并不是真的计算

time_tensorflow_run(sess, pool5, "Forward")

# 瞎弄的,伪装

objective = tf.nn.l2_loss(pool5)

grad = tf.gradients(objective, parameters)

time_tensorflow_run(sess, grad, "Forward-backward")

run_benchmark()

好啦,到这里就大功告成啦

可以体会gpu给你带来训练时的高速了,个人觉得还是得有一块好的显卡,这样加速效果会更好,速度更快。。。。

6.结束:

有什么问题和建议欢迎给我发邮件:1017190168@qq.com

0 人点赞