单细胞数据复现-肺癌文章代码复现5

2022-05-22 17:16:40 浏览数 (1)

单细胞数据复现-肺癌文章代码复现1https://cloud.tencent.com/developer/article/1992648

单细胞数据复现-肺癌文章代码复现2https://cloud.tencent.com/developer/article/1995619

单细胞数据复现-肺癌文章代码复现3https://cloud.tencent.com/developer/article/1996043

单细胞数据复现-肺癌文章代码复现4https://cloud.tencent.com/developer/article/2006654

教程3和4主要是分别对epi细胞亚群进行的分析,也是将亚群细分,然后去找里面比较重要的基因。今天的代码是对str亚群进行的分析。

ps:我发现放上图片后所占的版面过长,因此我就不放自己做出来的图了,是基本和原文一致的,基本按照我相关的代码是可以出来的,大家可以下载这篇文章的附图,进行比较,是不是自己需要调参数,因此我在后面有一个讲解的教程里面,单独进行拼图,与原文进行比较。

R环境的包及颜色配置加载

代码语言:javascript复制
### load libraries
library(Seurat)
library(dplyr)
library(reticulate)
library(sctransform)
library(cowplot)
library(ggplot2)
library(viridis)
library(tidyr)
library(magrittr)
library(reshape2)
library(readxl)
library(readr)
library(stringr)
library(gplots)
library(grid)
library(rlang)
library(tibble)

theme_set(theme_cowplot())

#color scheme
use_colors <- c(
  Tumor = "brown2",
  Normal = "deepskyblue2",
  G1 = "#46ACC8",
  G2M = "#E58601",
  S = "#B40F20",
  Epithelial = "seagreen",
  Immune = "darkgoldenrod2",
  Stromal = "steelblue",
  p018 = "#E2D200",
  p019 = "#46ACC8",
  p023 = "#E58601",
  p024 = "#B40F20",
  p027 = "#0B775E",
  p028 = "#E1BD6D",
  p029 = "#35274A",
  p030 = "#F2300F",
  p031 = "#7294D4",
  p032 = "#5B1A18",
  p033 = "#9C964A",
  p034 = "#FD6467",
  Endothelial1 = "#FED976",
  Endothelial2 = "#FEB24C",
  Endothelial3 = "#fd8d3C",
  Endothelial4 = "#FC4E2A",
  Endothelial5 = "#E31A1C",
  Endothelial6 = "#BD0026",
  Endothelial7 = "#800026",
  Lymphaticendothelial = "salmon",
  Fibroblast1 = "#2166AC",
  Fibroblast2 = "#4393C3",
  Myofibroblast1 = "#5AAE61",
  Myofibroblast2 = "#1B7837",
  Smoothmuscle1 = "#9970AB",
  Smoothmuscle2 = "#762A83",
  Mesothelial = "#40004B")

亚群分析

读取在一开始做分群的时候保存的rdata数据。

代码语言:javascript复制
str_anno <- readRDS("seurat_objects/str_anno.RDS")

通过读取meta中的数据,然后选择自己需要的几种细胞的水平,来进行后面的分析。

代码语言:javascript复制
str_anno@meta.data$cell_type_str <- factor(str_anno@meta.data$cell_type_str, levels = c("Endothelial1",
                                                                                        "Endothelial2",
                                                                                        "Endothelial3",
                                                                                        "Endothelial4",
                                                                                        "Endothelial5",
                                                                                        "Endothelial6",
                                                                                        "Endothelial7",
                                                                                        "Lymphaticendothelial",
                                                                                        "Fibroblast1",
                                                                                        "Fibroblast2",
                                                                                        "Myofibroblast1",
                                                                                        "Myofibroblast2",
                                                                                        "Smoothmuscle1",
                                                                                        "Smoothmuscle2",
                                                                                        "Mesothelial"))


##画图,主要是根据group的参数,这里选择的有组织、病人来源、细胞类型;还根据featuregene进行点图绘制,这个图也是单细胞组学文章中进行出镜的图
DimPlot(str_anno, group.by = "tissue_type", cols = use_colors)
#ggsave2("DimPlot_str_Normal_Tumor.pdf", path = "output/fig3", width = 15, height = 15, units = "cm")

DimPlot(str_anno, group.by = "patient_id", cols = use_colors, pt.size = 0.5)
ggsave2("SuppFig1C_str_patients.pdf", path = "../results", width = 15, height = 15, units = "cm")

DimPlot(str_anno, group.by = "cell_type_str", label = F, split.by = "tissue_type", cols = use_colors, pt.size = 0.5)
ggsave2("Fig3A_umap.pdf", path = "../results", width = 30, height = 15, units = "cm")

DotPlot(str_anno, features = c("WT1", "UPK3B", "MYH11", "PDGFRB", "ACTA2", "MYLK", "LUM", "PDGFRA", "CCL21", "PROX1", "PECAM1", "VWF"), group.by = "cell_type_str")   
  theme(axis.text.x = element_text(angle = 90, hjust = 1))  
  coord_flip()   
  scale_color_viridis()
ggsave2("Fig3B.pdf", path = "../results", width = 16, height = 12, units = "cm")
代码语言:javascript复制
###subsetting
##前面提到了在进行亚群在细分的时候,由于将自己需要的亚群进行了提取,所以需要在进行标准化,符合后面分析的要求。
str_endo <- subset(str_anno, subset = cell_type_str %in% c("Endothelial1",
                                                           "Endothelial2",
                                                           "Endothelial3",
                                                           "Endothelial4",
                                                           "Endothelial5",
                                                           "Endothelial6",
                                                           "Endothelial7",
                                                           "Lymphaticendothelial"))
str_endo <- ScaleData(str_endo)

str_fibro <- subset(str_anno, subset = cell_type_str %in% c("Fibroblast1",
                                                            "Fibroblast2",
                                                            "Myofibroblast1",
                                                            "Myofibroblast2",
                                                            "Smoothmuscle1",
                                                            "Smoothmuscle2",
                                                            "Mesothelial"))

str_fibro <- ScaleData(str_fibro)

endo_counts <- FetchData(str_endo, vars = c("tissue_type", "cell_type_str", "sample_id", "patient_id")) %>%  
  mutate(tissue_type = factor(tissue_type, levels = c("Tumor", "Normal")))

endo_counts_tbl <- endo_counts %>%
  dplyr::count(cell_type_str, patient_id, tissue_type)
write_csv(endo_counts_tbl, path = "../results/SuppTable1.csv")

fibro_counts <- FetchData(str_fibro, vars = c("tissue_type", "cell_type_str", "sample_id", "patient_id")) %>%  
  mutate(tissue_type = factor(tissue_type, levels = c("Tumor", "Normal"))) 

fibro_counts_tbl <- fibro_counts %>%
  dplyr::count(cell_type_str, patient_id, tissue_type)
write_csv(fibro_counts_tbl, path = "../results/SuppTable2.csv")

##作者很多的绘图的代码都很好看,自己在绘图的后期,可以自己粘贴过来,进行颜色和输入的修改就可以
ggplot(data = endo_counts, aes(x = tissue_type, fill = cell_type_str))  
  geom_bar(position = "fill")  
  scale_fill_manual(values = use_colors)  
  coord_flip()  
  scale_y_reverse()
ggsave2("Fig3A_barplot_endothelial.pdf", path = "../results", width = 20, height = 5, units = "cm")

ggplot(data = fibro_counts, aes(x = tissue_type, fill = cell_type_str))  
  geom_bar(position = "fill")  
  scale_fill_manual(values = use_colors)  
  coord_flip()  
  scale_y_reverse()
ggsave2("Fig3A_barplot_fibroblastic.pdf", path = "../results", width = 20, height = 5, units = "cm")

endo_counts %>%
  filter(tissue_type == "Tumor") %>%
  ggplot(aes(x = sample_id, fill = cell_type_str))  
  geom_bar(position = "fill")  
  scale_fill_manual(values = use_colors)  
  coord_flip()  
  scale_y_reverse()
ggsave2("Fig3A_barplot_endothelial_per_patient.pdf", path = "../results", width = 30, height = 30, units = "cm")

fibro_counts %>%
  filter(tissue_type == "Tumor") %>%
  ggplot(aes(x = sample_id, fill = cell_type_str))  
  geom_bar(position = "fill")  
  scale_fill_manual(values = use_colors)  
  coord_flip()  
  scale_y_reverse()
ggsave2("Fig3A_barplot_fibroblastic_per_patient.pdf", path = "../results", width = 30, height = 30, units = "cm")

endo_counts %>%
  filter(tissue_type == "Normal") %>%
  ggplot(aes(x = sample_id, fill = cell_type_str))  
  geom_bar(position = "fill")  
  scale_fill_manual(values = use_colors)  
  coord_flip()  
  scale_y_reverse()
ggsave2("SuppFig6A_endothelial.pdf", path = "../results", width = 30, height = 30, units = "cm")

fibro_counts %>%
  filter(tissue_type == "Normal") %>%
  ggplot(aes(x = sample_id, fill = cell_type_str))  
  geom_bar(position = "fill")  
  scale_fill_manual(values = use_colors)  
  coord_flip()  
  scale_y_reverse()
ggsave2("SuppFig6A_fibroblastic.pdf", path = "../results", width = 30, height = 30, units = "cm")

热图绘制

在进行单细胞热图绘制的时候,seurat的heatmap只是可以看到亚群和基因号,不可以添加其他的参数,但是这个脚本可以添加其他很多的参数,如分组、样本来源等,文章作者也给出了参考来源-https://github.com/satijalab/seurat/issues/2201,主要的代码参考如下,自己在github的网站上查看源码根据自己的需求进行更改。

代码语言:javascript复制
DoMultiBarHeatmap <- function (object, 
                               features = NULL, 
                               cells = NULL, 
                               group.by = "ident", 
                               additional.group.by = NULL, 
                               additional.group.sort.by = NULL, 
                               cols.use = NULL,
                               group.bar = TRUE, 
                               disp.min = -2.5, 
                               disp.max = NULL, 
                               slot = "scale.data", 
                               assay = NULL, 
                               label = TRUE, 
                               size = 5.5, 
                               hjust = 0, 
                               angle = 45, 
                               raster = TRUE, 
                               draw.lines = TRUE, 
                               lines.width = NULL, 
                               group.bar.height = 0.02, 
                               combine = TRUE) 
{
  cells <- cells %||% colnames(x = object)
  if (is.numeric(x = cells)) {
    cells <- colnames(x = object)[cells]
  }
  assay <- assay %||% DefaultAssay(object = object)
  DefaultAssay(object = object) <- assay
  features <- features %||% VariableFeatures(object = object)
  ## Why reverse???
  features <- rev(x = unique(x = features))
  disp.max <- disp.max %||% ifelse(test = slot == "scale.data", 
                                   yes = 2.5, no = 6)
  possible.features <- rownames(x = GetAssayData(object = object, 
                                                 slot = slot))
  if (any(!features %in% possible.features)) {
    bad.features <- features[!features %in% possible.features]
    features <- features[features %in% possible.features]
    if (length(x = features) == 0) {
      stop("No requested features found in the ", slot, 
           " slot for the ", assay, " assay.")
    }
    warning("The following features were omitted as they were not found in the ", 
            slot, " slot for the ", assay, " assay: ", paste(bad.features, 
                                                             collapse = ", "))
  }
  
  if (!is.null(additional.group.sort.by)) {
    if (any(!additional.group.sort.by %in% additional.group.by)) {
      bad.sorts <- additional.group.sort.by[!additional.group.sort.by %in% additional.group.by]
      additional.group.sort.by <- additional.group.sort.by[additional.group.sort.by %in% additional.group.by]
      if (length(x = bad.sorts) > 0) {
        warning("The following additional sorts were omitted as they were not a subset of additional.group.by : ", 
                paste(bad.sorts, collapse = ", "))
      }
    }
  }
  
  data <- as.data.frame(x = as.matrix(x = t(x = GetAssayData(object = object, 
                                                             slot = slot)[features, cells, drop = FALSE])))
  
  object <- suppressMessages(expr = StashIdent(object = object, 
                                               save.name = "ident"))
  group.by <- group.by %||% "ident"
  groups.use <- object[[c(group.by, additional.group.by[!additional.group.by %in% group.by])]][cells, , drop = FALSE]
  plots <- list()
  for (i in group.by) {
    data.group <- data
    if (!is_null(additional.group.by)) {
      additional.group.use <- additional.group.by[additional.group.by!=i]  
      if (!is_null(additional.group.sort.by)){
        additional.sort.use = additional.group.sort.by[additional.group.sort.by != i]  
      } else {
        additional.sort.use = NULL
      }
    } else {
      additional.group.use = NULL
      additional.sort.use = NULL
    }
    
    group.use <- groups.use[, c(i, additional.group.use), drop = FALSE]
    
    for(colname in colnames(group.use)){
      if (!is.factor(x = group.use[[colname]])) {
        group.use[[colname]] <- factor(x = group.use[[colname]])
      }  
    }
    
    if (draw.lines) {
      lines.width <- lines.width %||% ceiling(x = nrow(x = data.group) * 
                                                0.0025)
      placeholder.cells <- sapply(X = 1:(length(x = levels(x = group.use[[i]])) * 
                                           lines.width), FUN = function(x) {
                                             return(Seurat:::RandomName(length = 20))
                                           })
      placeholder.groups <- data.frame(rep(x = levels(x = group.use[[i]]), times = lines.width))
      group.levels <- list()
      group.levels[[i]] = levels(x = group.use[[i]])
      for (j in additional.group.use) {
        group.levels[[j]] <- levels(x = group.use[[j]])
        placeholder.groups[[j]] = NA
      }
      
      colnames(placeholder.groups) <- colnames(group.use)
      rownames(placeholder.groups) <- placeholder.cells
      
      group.use <- sapply(group.use, as.vector)
      rownames(x = group.use) <- cells
      
      group.use <- rbind(group.use, placeholder.groups)
      
      for (j in names(group.levels)) {
        group.use[[j]] <- factor(x = group.use[[j]], levels = group.levels[[j]])
      }
      
      na.data.group <- matrix(data = NA, nrow = length(x = placeholder.cells), 
                              ncol = ncol(x = data.group), dimnames = list(placeholder.cells, 
                                                                           colnames(x = data.group)))
      data.group <- rbind(data.group, na.data.group)
    }
    
    order_expr <- paste0('order(', paste(c(i, additional.sort.use), collapse=','), ')')
    group.use = with(group.use, group.use[eval(parse(text=order_expr)), , drop=F])
    
    plot <- Seurat:::SingleRasterMap(data = data.group, raster = raster, 
                                     disp.min = disp.min, disp.max = disp.max, feature.order = features, 
                                     cell.order = rownames(x = group.use), group.by = group.use[[i]])
    
    if (group.bar) {
      pbuild <- ggplot_build(plot = plot)
      group.use2 <- group.use
      cols <- list()
      na.group <- Seurat:::RandomName(length = 20)
      for (colname in rev(x = colnames(group.use2))) {
        if (colname == i) {
          colid = paste0('Identity (', colname, ')')
        } else {
          colid = colname
        }
        
        # Default
        cols[[colname]] <- c(scales::hue_pal()(length(x = levels(x = group.use[[colname]]))))  
        
        #Overwrite if better value is provided
        if (!is_null(cols.use[[colname]])) {
          req_length = length(x = levels(group.use))
          if (length(cols.use[[colname]]) < req_length){
            warning("Cannot use provided colors for ", colname, " since there aren't enough colors.")
          } else {
            if (!is_null(names(cols.use[[colname]]))) {
              if (all(levels(group.use[[colname]]) %in% names(cols.use[[colname]]))) {
                cols[[colname]] <- as.vector(cols.use[[colname]][levels(group.use[[colname]])])
              } else {
                warning("Cannot use provided colors for ", colname, " since all levels (", paste(levels(group.use[[colname]]), collapse=","), ") are not represented.")
              }
            } else {
              cols[[colname]] <- as.vector(cols.use[[colname]])[c(1:length(x = levels(x = group.use[[colname]])))]
            }
          }
        }
        
        # Add white if there's lines
        if (draw.lines) {
          levels(x = group.use2[[colname]]) <- c(levels(x = group.use2[[colname]]), na.group)  
          group.use2[placeholder.cells, colname] <- na.group
          cols[[colname]] <- c(cols[[colname]], "#FFFFFF")
        }
        names(x = cols[[colname]]) <- levels(x = group.use2[[colname]])
        
        y.range <- diff(x = pbuild$layout$panel_params[[1]]$y.range)
        y.pos <- max(pbuild$layout$panel_params[[1]]$y.range)   y.range * 0.015
        y.max <- y.pos   group.bar.height * y.range
        pbuild$layout$panel_params[[1]]$y.range <- c(pbuild$layout$panel_params[[1]]$y.range[1], y.max)
        
        plot <- suppressMessages(plot   
                                   annotation_raster(raster = t(x = cols[[colname]][group.use2[[colname]]]),  xmin = -Inf, xmax = Inf, ymin = y.pos, ymax = y.max)   
                                   annotation_custom(grob = grid::textGrob(label = colid, hjust = 0, gp = gpar(cex = 0.75)), ymin = mean(c(y.pos, y.max)), ymax = mean(c(y.pos, y.max)), xmin = Inf, xmax = Inf)  
                                   coord_cartesian(ylim = c(0, y.max), clip = "off")) 
        
        if ((colname == i) && label) {
          x.max <- max(pbuild$layout$panel_params[[1]]$x.range)
          x.divs <- pbuild$layout$panel_params[[1]]$x.major %||% pbuild$layout$panel_params[[1]]$x$break_positions()
          group.use$x <- x.divs
          label.x.pos <- tapply(X = group.use$x, INDEX = group.use[[colname]],
                                FUN = median) * x.max
          label.x.pos <- data.frame(group = names(x = label.x.pos), 
                                    label.x.pos)
          plot <- plot   geom_text(stat = "identity", 
                                   data = label.x.pos, aes_string(label = "group", 
                                                                  x = "label.x.pos"), y = y.max   y.max * 
                                     0.03 * 0.5, angle = angle, hjust = hjust, 
                                   size = size)
          plot <- suppressMessages(plot   coord_cartesian(ylim = c(0, 
                                                                   y.max   y.max * 0.002 * max(nchar(x = levels(x = group.use[[colname]]))) * 
                                                                     size), clip = "off"))
        }
      }
    }
    plot <- plot   theme(line = element_blank())
    plots[[i]] <- plot
  }
  if (combine) {
    plots <- CombinePlots(plots = plots)
  }
  return(plots)
}

根据上面的热图的源码进行分组的热图高表达基因的绘制。基本的代码跟前面的epi的代码是类似的。

代码语言:javascript复制
###DEGs endothelial

Idents(str_endo) <- str_endo@meta.data$cell_type_str

endo_markers <- FindAllMarkers(str_endo, only.pos = T, min.pct = 0.25, min.diff.pct = 0.25)

top_endo_markers <- endo_markers %>% group_by(cluster) %>% top_n(10, wt = avg_log2FC)

DoMultiBarHeatmap(str_endo, features = top_endo_markers$gene, group.by = "cell_type_str", additional.group.by = "tissue_type",additional.group.sort.by = "tissue_type", cols.use = list(tissue_type = use_colors), draw.lines = F)  
  scale_fill_viridis()
ggsave2("SuppFig6B.png", path = "../results", width = 30, height = 40, units = "cm")
#ggsave2("HeatMap_Endo.pdf", path = "output/fig3", width = 30, height = 40, units = "cm")
#ggsave2("HeatMap_Endo.emf", path = "output/fig3", width = 30, height = 40, units = "cm")

这里是对另一种细胞类型进行的差异分析,如果想要求严格一些,可以放p_value值进行筛选。

代码语言:javascript复制
###DEGs fibroblastic

Idents(str_fibro) <- str_fibro@meta.data$cell_type_str

fibro_markers <- FindAllMarkers(str_fibro, only.pos = T, min.pct = 0.25, min.diff.pct = 0.25)

top_fibro_markers <- fibro_markers %>% group_by(cluster) %>% top_n(10, wt = avg_log2FC)

DoMultiBarHeatmap(str_fibro, features = top_fibro_markers$gene, group.by = "cell_type_str", additional.group.by = "tissue_type",additional.group.sort.by = "tissue_type", cols.use = list(tissue_type = use_colors), draw.lines = F)  
  scale_fill_viridis()
ggsave2("Fig6C.png", path = "../results", width = 30, height = 40, units = "cm")
#ggsave2("HeatMap_Fibro.pdf", path = "output/fig3", width = 30, height = 40, units = "cm")
#ggsave2("HeatMap_Fibro.emf", path = "output/fig3", width = 30, height = 40, units = "cm")

主要将3个不同的细胞类型进行细分,是主要想看在不同微环境下,肿瘤基因的相关通路,所以可以发现在3个亚群最后一步分析当中都带入了progeny scores参数,具体做肿瘤的友友可以参考这篇文章-https://www.jianshu.com/p/4058050d546e,由于我是做植物的,来源也不一样,所以不进行讲解了。

代码语言:javascript复制
###progeny scores

str_fibro2 <- subset(str_anno, subset = cell_type_str %in% c("Fibroblast1",
                                                             "Fibroblast2",
                                                             "Myofibroblast1",
                                                             "Myofibroblast2",
                                                             "Smoothmuscle1",
                                                             "Smoothmuscle2"))

progeny_scores <- as.data.frame(t(GetAssayData(str_fibro2, assay = "progeny", slot = "scale.data")))
progeny_scores$cell_id <- rownames(progeny_scores)
progeny_scores <- gather(progeny_scores, Pathway, Activity, -cell_id)

cells_clusters <- FetchData(str_anno, c("cell_type_str"))
cells_clusters$cell_id <- rownames(cells_clusters)

progeny_scores <- inner_join(progeny_scores, cells_clusters)

summarized_progeny_scores <- progeny_scores %>% 
  group_by(Pathway, cell_type_str) %>% 
  summarise(avg = mean(Activity), std = sd(Activity), .groups = 'drop') %>%
  pivot_wider(id_cols = Pathway, names_from = cell_type_str, values_from = avg) %>%
  column_to_rownames("Pathway") %>%
  as.matrix()

heatmap.2(summarized_progeny_scores, trace = "none", density.info = "none", col = bluered(100), margins = c(10,10))
ggsave("Fig3D.pdf", width = 7, height = 10)

总结

可以发现这篇与上两篇的对epi分析的思路很像,都是对亚群进行细分以及细胞通路的查看,去看一些基因的表达情况,将里面的基因根据不同表达水平进行划分。这个时候发现单细胞的分析在前面还是很像的,但是根据自己研究的样本以及生物学问题的来源不一样,后面是需要进行不同的包的调取,还有个性化分析的,所以无论是做植物还是动物的,多读一些最新的单细胞组学的文章都是能学到很多的内容的,不断的将自己的文章提高一个新的思路。

0 人点赞